Aydın, Zafer

Loading...
Profile Picture
Name Variants
Aydin, Zafer
Aydın, Zafer
Job Title
Doç. Dr.
Email Address
zafer.aydin@agu.edu.tr
Main Affiliation
02. 04. Bilgisayar Mühendisliği
Status
Current Staff
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

12

Research Products

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

1

Research Products

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

2

Research Products
Documents

57

Citations

675

h-index

14

Documents

55

Citations

504

Scholarly Output

62

Articles

31

Views / Downloads

5765/2727

Supervised MSc Theses

8

Supervised PhD Theses

5

WoS Citation Count

217

Scopus Citation Count

404

WoS h-index

10

Scopus h-index

12

Patents

0

Projects

1

WoS Citations per Publication

3.50

Scopus Citations per Publication

6.52

Open Access Source

30

Supervised Theses

13

Google Analytics Visitor Traffic

JournalCount
Turkish Journal of Electrical Engineering and Computer Sciences3
-- 26th IEEE Signal Processing and Communications Applications Conference, SIU 2018 -- Izmir; Altin Yunus Resort ve Thermal Hotel -- 1377802
Journal of Bioinformatics and Computational Biology2
IEEE-Acm Transactions on Computational Biology and Bioinformatics2
9th International Conference on Computational Intelligence and Communication Networks (CICN) -- SEP 16-17, 2017 -- Final Int Univ, Girne, CYPRUS2
Current Page: 1 / 8

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 10 of 62
  • Book Part
    Citation - Scopus: 3
    ROSE: A Novel Approach for Protein Secondary Structure Prediction
    (Springer Science and Business Media Deutschland GmbH, 2021) Görmez, Yasin; Aydin, Zafer
    Three-dimensional structure of protein gives important information about protein’s function. Since it is time-consuming and costly to find the structure of protein by experimental methods, estimation of three-dimensional structures of proteins through computational methods has been an efficient alternative. One of the most important steps for the 3-D protein structure prediction is protein secondary structure prediction. Proteins which contain different number and sequences of amino acids may have similar structures. Thus, extracting appropriate input features has crucial importance for secondary structure prediction. In this study, a novel model, ROSE, is proposed for secondary structure prediction that obtains probability distributions as a feature vector by using two position specific scoring matrices obtained by PSIBLAST and HHblits. ROSE is a two-stage hybrid classifier that uses a one-dimensional bi-directional recurrent neural network at the first stage and a support vector machine at the second stage. It is also combined with DSPRED method, which employs dynamic Bayesian networks and a support vector machine. ROSE obtained comparable results to DSPRED in cross-validation experiments performed on a difficult benchmark and can be used as an alternative to protein secondary structure prediction. © 2021 Elsevier B.V., All rights reserved.
  • Article
    Citation - WoS: 15
    Citation - Scopus: 14
    A Review of Mammographic Region of Interest Classification
    (Wiley Periodicals, inc, 2020) Yengec Tasdemir, Sena B.; Tasdemir, Kasim; Aydin, Zafer
    Early detection of breast cancer is important and highly valuable in clinical practice. X-ray mammography is broadly used for prescreening the breast and is also attractive due to its noninvasive nature. However, experts can misdiagnose a significant proportion of the cases, which may either cause redundant examinations or cancer. In order to reduce false positive and negative rates of mammography screening, computer-aided breast cancer detection has been studied for more than 30 years and many methods have been proposed by the researchers. In this review, region of interest (ROI) classification methods, which operate on a predefined or segmented ROIs with a focus on mass classification are surveyed. A total of 72 high quality journal and conference papers are selected from the Web of Science (WOS) database that meet several inclusion criteria. A comparative analysis is provided based on ROI extraction methods, data sets and machine learning techniques employed, the prediction accuracies, and usage frequency statistics. Based on the performances obtained on publicly available data sets, the ROI classification problem from mammogram images can be considered as approaching to be solved. Nonetheless, it can still be used as complementary information in breast cancer detection from the whole mammograms, which has room for improvement. This article is categorized under: Application Areas > Science and Technology Technologies > Machine Learning Technologies > Classification
  • Article
    Citation - WoS: 2
    Citation - Scopus: 1
    Deep-Learning AI-Model for Predicting Dental Plaque in the Young Permanent Teeth of Children Aged 8-13 Years
    (MDPI, 2025) Tez, Banu Cicek; Guzel, Yasin; Eliacik, Bahar Basak Kiziltan; Aydin, Zafer
    Background/Objectives: Dental plaque is a significant contributor to various prevalent oral health conditions, including caries, gingivitis, and periodontitis. Consequently, its detection and management are of paramount importance for maintaining oral health. Manual plaque assessment is time-consuming, error-prone, and particularly challenging in uncooperative pediatric patients. These limitations have encouraged researchers to seek faster, more reliable methods. Accordingly, this study aims to develop a deep learning model for detecting and segmenting plaque in young permanent teeth and to evaluate its diagnostic precision. Methods: The dataset comprises 506 dental images from 31 patients aged between 8 and 13 years. Six state-of-the-art models were trained and evaluated using this dataset. The U-Net Transformer model, which yielded the best performance, was further compared against three experienced pediatric dentists for clinical feasibility using 35 randomly selected images from the test set. The clinical trial was registered on under the ID NCT06603233 (1 June 2023). Results: The Intersection over Union (IoU) score of the U-Net Transformer on the test set was measured as 0.7845, and the p-values obtained from the three t-tests conducted for comparison with dentists were found to be below 0.05. Compared with three experienced pediatric dentists, the deep learning model exhibited clinically superior performance in the detection and segmentation of dental plaque in young permanent teeth. Conclusions: This finding highlights the potential of AI-driven technologies in enhancing the accuracy and reliability of dental plaque detection and segmentation in pediatric dentistry.
  • Conference Object
    Citation - WoS: 1
    Citation - Scopus: 7
    Short Term Electricity Load Forecasting: A Case Study of Electric Utility Market in Turkey
    (Institute of Electrical and Electronics Engineers Inc., 2015) Ishik, Muhammed Yasin; Göze, Tolga; Ozcan, Ihsan; Güngör, Vehbi Çağrı; Aydin, Zafer
    With the recent developments in energy sector, the pricing of electricity is now governed by the spot market where a variety of market mechanisms are effective. After the new legislation of market liberalization in Turkey, competition-based on hourly price has received a growing interest in the energy market, which necessitated generators and electric utility companies to add new dimensions to their scope of operation: short-term load and price forecasting. The field has several opportunities though not free from challenges. The dynamic behavior of the market price has caused the electric load to become variable and non-stationary. Furthermore, the number of nodes, in which the load must be predicted, is not constant anymore and can no longer be estimated by experts alone. In this competitive scenario, statistical forecasting methods that can automatically and accurately process thousands of data samples are essential. The purpose of this study is to demonstrate the importance of short-term load forecasting, how it has received a growing interest in Turkey and to propose an artificial neural network that can forecast the short term electricity load. Through detailed performance evaluations, we demonstrate that our forecasting method is capable of predicting the hourly load accurately. © 2017 Elsevier B.V., All rights reserved.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    3-State Protein Secondary Structure Prediction Based on Scope Classes
    (Inst Tecnologia Parana, 2021) Atasever, Sema; Azginoglu, Nuh; Erbay, Hasan; Aydin, Zafer
    Improving the accuracy of protein secondary structure prediction has been an important task in bioinformatics since it is not only the starting point in obtaining tertiary structure in hierarchical modeling but also enhances sequence analysis and sequence-structure threading to help determine structure and function. Herein we present a model based on DSPRED classifier, a hybrid method composed of dynamic Bayesian networks and a support vector machine to predict 3-state secondary structure information of proteins. We used the SCOPe (Structural Classification of Proteins-extended) database to train and test the model. The results show that DSPRED reached a Q(3) accuracy rate of 82.36% when trained and tested using proteins from all SCOPe classes. We compared our method with the popular PSI PRED on the SCOPe test datasets and found that our method outperformed PSI PRED.
  • Conference Object
    Citation - WoS: 1
    Citation - Scopus: 3
    Data Mining Techniques in Direct Marketing on Imbalanced Data Using Tomek Link Combined With Random Under-Sampling
    (Assoc Computing Machinery, 2021) Yilmaz, Umit; Gezer, Cengiz; Aydin, Zafer; Gungor, V. CaGri
    Determining the potential customers is very important in direct marketing. Data mining techniques are one of the most important methods for companies to determine potential customers. However, since the number of potential customers is very low compared to the number of non-potential customers, there is a class imbalance problem that significantly affects the performance of data mining techniques. In this paper, different combinations of basic and advanced resampling techniques such as Synthetic Minority Over-sampling Technique (SMOTE), Tomek Link, RUS, and ROS were evaluated to improve the performance of customer classification. Different feature selection techniques are used in order the decrease the number of non-informative features from the data such as Information Gain, Gain Ratio, Chi-squared, and Relief. Classification performance was compared and utilized using several data mining techniques, such as LightGBM, XGBoost, Gradient Boost, Random Forest, AdaBoost, ANN, Logistic Regression, Decision Trees, SVC, Bagging Classifier based on ROC AUC and sensitivity metrics. A combination of Tomek Link and Random Under-Sampling as a resampling technique and Chi-squared method as feature selection algorithm showed superior performance among the other combinations. Detailed performance evaluations demonstrated that with the proposed approach, LightGBM, which is a gradient boosting algorithm based on decision tree, gave the best results among the other classifiers with 0.947 sensitivity and 0.896 ROC AUC value.
  • Research Project
    Zenginleştirilmiş Öznitelikler ve Makine Öğrenmesi Yöntemleriyle Protein Yerel Yapı Tahmini
    (TUBİTAK, 2017) Aydın, Zafer
    Projenin amacı proteinlerde bulunan ikincil yapı, dihedral açı ve çözücü erişilirlik gibi bir boyutlu yapısal özelliklerin başarılı olarak tahmin edilmesi ve bu tahminleri kullanarak parçacık seçimi yapan yeni bir yöntem geliştirilmesidir. Geliştirilen yöntemler sayesinde proteinlerin üç boyutlu yapısının daha doğru tahmin edilmesi, proteinlerin fonksiyonlarının daha iyi anlaşılması ve daha etkili ilaç tasarımı yapılması mümkün olacaktır. Bir boyutlu yapısal özelliklerin tahmini için yürütücünün daha önce geliştirdiği iki aşamalı hibrit sınıflandırma yöntemi kullanılmıştır. Bu yöntemde bulunan sınıflandırıcılar için dizi tabanlı profiller, yapısal profil matrisleri gibi çeşitli öznitelik vektörleri kullanılmıştır. İkinci aşamadaki sınıflandırıcı için destek vektör makinası, derin KSA, rastgele orman ve topluluk gibi çeşitli öğrenme yöntemleri eğitilmiş ve geliştirilen yöntemlerin tahmin başarı oranları standart veri kümelerinde incelenmiştir. Ayrıca bu aşamada derin otokodlayıcılar ve öznitelik seçme yaklaşımları ile boyut düşürme gerçekleştirilmiştir. Protein parçacık seçimi için verilen iki amino asit dizisi parçacığının yapısal olarak benzer olup olmadığının tahmin eden yöntemler geliştirilmiştir. Bunun için Rosetta programının parçacık veritabanında bulunan proteinlerden parçacık ikilileri örneklenmiş, bu ikililer BCScore yöntemi ile etiketlenmiş, eğitim ve test kümeleri oluşturulmuştur. Ayrıca farklı öznitelik kümeleri konsept hiyerarşi yaklaşımı ile kapsamlı olarak incelenmiş ve en başarılı sonucu veren öznitelik kombinasyonları tespit edilmiştir. Parçacık seçimi probleminde 3 ve 9 amino asitlik parçacıklar üzerinde çalışılmıştır ancak yöntemler diğer uzunluktaki parçacıklar için de kolaylıkla uygulanabilecektir. Projede geliştirilen yöntemler sayesinde ikincil yapı tahmin başarısı en zor tahmin kategorisinde %2.6 iyileşmiş, dihedral açı tahmin başarısı önemli oranda iyileşmiş, çözücü erişilirlik probleminde literatürdeki en başarılı yöntemler ile benzer bir seviye yakalanmıştır. Parçacık seçiminde ise verilen iki parçacığın yapılarının benzer olup olmadıkları 3-mer parçacıklar için %94 ve 9merler içinse %97 oranı ile tahmin edilmiştir. Yapılan çalışmaların neticesinde öznitelik vektörlerinin daha iyi tasarlanmasının ve farklı sınıflandırma yöntemlerinin birleştirilip optimize edilmesinin yapısal özellik tahmin başarısını önemli oranda iyileştirdiği sonucuna varılmıştır.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 19
    A Deep Learning Approach With Bayesian Optimization and Ensemble Classifiers for Detecting Denial of Service Attacks
    (Wiley, 2020) Gormez, Yasin; Aydin, Zafer; Karademir, Ramazan; Gungor, Vehbi C.
    Detecting malicious behavior is important for preventing security threats in a computer network. Denial of Service (DoS) is among the popular cyber attacks targeted at web sites of high-profile organizations and can potentially have high economic and time costs. In this paper, several machine learning methods including ensemble models and autoencoder-based deep learning classifiers are compared and tuned using Bayesian optimization. The autoencoder framework enables to extract new features by mapping the original input to a new space. The methods are trained and tested both for binary and multi-class classification on Digiturk and Labris datasets, which were introduced recently for detecting various types of DDoS attacks. The best performing methods are found to be ensembles though deep learning classifiers achieved comparable level of accuracy.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 13
    A Continuously Benchmarked and Crowdsourced Challenge for Rapid Development and Evaluation of Models to Predict COVID-19 Diagnosis and Hospitalization
    (Amer Medical Assoc, 2021) Yan, Yao; Schaffter, Thomas; Bergquist, Timothy; Yu, Thomas; Prosser, Justin; Aydin, Zafer; Mooney, Sean
    IMPORTANCE Machine learning could be used to predict the likelihood of diagnosis and severity of illness. Lack of COVID-19 patient data has hindered the data science community in developing models to aid in the response to the pandemic. OBJECTIVES To describe the rapid development and evaluation of clinical algorithms to predict COVID-19 diagnosis and hospitalization using patient data by citizen scientists, provide an unbiased assessment of model performance, and benchmark model performance on subgroups. DESIGN, SETTING, AND PARTICIPANTS This diagnostic and prognostic study operated a continuous, crowdsourced challenge using a model-to-data approach to securely enable the use of regularly updated COVID-19 patient data from the University of Washington by participants from May 6 to December 23, 2020. A postchallenge analysis was conducted from December 24, 2020, to April 7, 2021, to assess the generalizability of models on the cumulative data set as well as subgroups stratified by age, sex, race, and time of COVID-19 test. By December 23, 2020, this challenge engaged 482 participants from 90 teams and 7 countries. MAIN OUTCOMES AND MEASURES Machine learning algorithms used patient data and output a score that represented the probability of patients receiving a positive COVID-19 test result or being hospitalized within 21 days after receiving a positive COVID-19 test result. Algorithms were evaluated using area under the receiver operating characteristic curve (AUROC) and area under the precision recall curve (AUPRC) scores. Ensemble models aggregating models from the top challenge teams were developed and evaluated. RESULTS In the analysis using the cumulative data set, the best performance for COVID-19 diagnosis prediction was an AUROC of 0.776 (95% CI, 0.775-0.777) and an AUPRC of 0.297, and for hospitalization prediction, an AUROC of 0.796 (95% CI, 0.794-0.798) and an AUPRC of 0.188. Analysis on top models submitting to the challenge showed consistently better model performance on the female group than the male group. Among all age groups, the best performance was obtained for the 25- to 49-year age group, and the worst performance was obtained for the group aged 17 years or younger. CONCLUSIONS AND RELEVANCE In this diagnostic and prognostic study, models submitted by citizen scientists achieved high performance for the prediction of COVID-19 testing and hospitalization outcomes. Evaluation of challenge models on demographic subgroups and prospective data revealed performance discrepancies, providing insights into the potential bias and limitations in the models.
  • Master Thesis
    Bilgisayar Ağlarında Anormal Durum Tespiti Yapan Öğrenme Yöntemlerinin Geliştirilmesi
    (Abdullah Gül Üniversitesi, 2018) MUKHANDI, HABIBU SHOMARI; Mukhandi, Habibu Shomari; Aydın, Zafer
    Makine öğrenmesi, verilerdeki bilginin bir bilgisayar ya da makina tarafından otomatik olarak öğrenilmesi ve karşılaşılan yeni durumlarda anlamlı bilgi ya da davranışların üretilmesini amaçlar. Bir çok uygulama alanı bulunan makine öğrenmesi daha önce hiç karşılaşılmamış olan sıradışı durumların tespit edilmesi için de kullanılmaktadır. Bilgisayar ağlarındaki siber saldırılar, kredi kartı dolandırıcılığı ve internet sitelerinin linklerine yapılan çok sayıda sahte tıklamalar dünya genelinde ekonomileri ciddi oranda zarara uğratabilecek niteliktedir. Bu tezde üç farklı anormal durum tespiti problemi üzerinde çalışılmıştır: bilgisayar ağlarında saldırı tespiti, kredi kartı dolandırıcılığı tespiti ve internet sitelerdeki linklere sahte tıklama tespiti. Anormal durum tespiti için geliştirilen ve optimize edilen modeller arasında rastgele orman, en yakın komşu, destek vektör makinası, logistic regresyon, karar ağacı, AdaBoost, çantalama ve yığınlama gibi sınıflandırma yöntemleri bulunmaktadır. Yöntemlerin hiper-parametreleri eğitim kümelerinde yapılan çapraz doğrulama deneyleri ile optimize edilmiştir. Bir sonraki aşamada optimum hiper-parametre konfigürasyonları kullanılarak eğitilen modeler ile test verilerinde tahmin sonuçları hesaplanmıştır. Bu deneyler neticesinde genel doğruluk oranı ve F-measure skorlarında yüksek başarı elde edilmiştir. Geliştirilen yöntemler arasında en başarılı sonuçlar topluluk modelleri ile elde edilmiştir.