Yalçın, Salih

Loading...
Profile Picture
Name Variants
Yalcin, Salih
Yalçın, S.
Yalçın, Salih
Job Title
Öğr. Gör.
Email Address
salih.yalcin@agu.edu.tr
Main Affiliation
10. Rektörlük
Status
Current Staff
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

SDG data is not available
This researcher does not have a Scopus ID.
Documents

0

Citations

0

Scholarly Output

2

Articles

1

Views / Downloads

395/251

Supervised MSc Theses

1

Supervised PhD Theses

0

WoS Citation Count

0

Scopus Citation Count

0

WoS h-index

0

Scopus h-index

0

Patents

0

Projects

0

WoS Citations per Publication

0.00

Scopus Citations per Publication

0.00

Open Access Source

1

Supervised Theses

1

Google Analytics Visitor Traffic

JournalCount
Integration-The Vlsi Journal1
Current Page: 1 / 1

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 2 of 2
  • Master Thesis
    Bilgisayar Algoritmalarının GPU ile Hızlandırılması
    (Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Yalçın, Salih; Alkan, Gülay Yalçın
    Travelling Salesman Problem (TSP) is one of the significant problems in computer science which tries to find the shortest path for a salesman who needs to visit a set of cities and it involves in many computing problems such as networks, genome analysis, logistic etc. Using parallel executing paradigms, especially GPUs, is appealing in order to reduce the problem-solving time of TSP. One of the main issues in GPUs is to have limited GPU memory which would not be enough for the entire data. Therefore, transferring data from host device would reduce the performance in execution time. In this study, we present a methodology for compressing data to represent cities in the TSP so that we include more cities in GPU memory. We implement our methodology in Iterated Local Search (ILS) algorithm with 2-opt and show that our implementation presents 29% performance improvement compared to the state-of-the-art GPU implementation.
  • Article
    CompreCity: Accelerating the Traveling Salesman Problem on GPU With Data Compression
    (Elsevier, 2025) Yalcin, Salih; Usul, Hamdi Burak; Yalcin, Gulay
    Traveling Salesman Problem (TSP) is one of the significant problems in computer science which tries to find the shortest path for a salesman who needs to visit a set of cities and it is involved in many computing problems such as networks, genome analysis, logistics etc. Using parallel executing paradigms, especially GPUs, is appealing in order to reduce the problem solving time of TSP. One of the main issues in GPUs is to have limited GPU memory which would not be enough for the entire data. Therefore, transferring data from the host device would reduce the performance in execution time. In this study, we applied three data compression methodologies to represent cities in the TSP such as (1) Using Greatest Common Divisor (2) Shift Cities to the Origin (3) Splitting Surface to Grids. Therefore, we include more cities in GPU memory and reduce the number of data transfers from the host device. We implement our methodology in Iterated Local Search (ILS) algorithm with 2-opt and The Lin-Kernighan-Helsgaun (LKH) Algorithm. We show that our implementation presents more than 25% performance improvement for both algorithms.