Deneme, İbrahim

Loading...
Profile Picture
Name Variants
Deneme, Ibrahim
Deneme, İbrahim
Job Title
Öğr. Gör.
Email Address
ibrahim.deneme@agu.edu.tr
Main Affiliation
10. Rektörlük
Status
Current Staff
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

1

Research Products
This researcher does not have a Scopus ID.
Documents

10

Citations

123

Scholarly Output

11

Articles

9

Views / Downloads

369/171

Supervised MSc Theses

1

Supervised PhD Theses

1

WoS Citation Count

112

Scopus Citation Count

111

WoS h-index

5

Scopus h-index

5

Patents

0

Projects

3

WoS Citations per Publication

10.18

Scopus Citations per Publication

10.09

Open Access Source

7

Supervised Theses

2

Google Analytics Visitor Traffic

JournalCount
ACS Applied Materials & Interfaces3
Journal of Materials Chemistry C2
Advanced Materials1
Advanced Materials Technologies1
Nature Communications1
Current Page: 1 / 2

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 10 of 11
  • Master Thesis
    Solüsyondan Proses Edilebilir Çubuk Yapısında Moleküler Yarı İletkenler ve Alan Etkili Transistör Uygulamaları
    (Abdullah Gül Üniversitesi, 2018) DENEME, İBRAHİM; Deneme, İbrahim; Usta, Hakan
    Yeni n-tipi yarı iletkenlerin yapısal dizaynı ve sentetik olarak geliştirilmesi yük taşıma mekanizmasının temellerinin anlaşılması noktasında bilimsel ve teknolojik alanlarda önemli derecede ilgi uyandırmıştır. Son yıllarda literatürde mevcut çok sayıda n-tipi yarı iletken olmasına rağmen, solüsyondan proses edilebilen ve havada kararlı n-tipi yarı-iletken malzeme sayısı oldukça sınırlıdır. Burada biz, indeno[1,2-b]floren ve (triizopropilsilil)etinil tabanlı, 6,12-pozisyonlarında disiyanovinilen ve 2,8-pozisyonlarında ise karbonil fonksiyonel grupları içeren iki yeni moleküler yarı-iletkenlerin dizaynı, sentezi, tek kristal yapıları, optoelektronik özellikleri, çözelti ile proses edilmiş ince-film morfolojilerini/mikroyapılarını ve organik alan etkili transistör uygulamalarını ortaya koyduk. Elektron çekici karbonil, disiyanovinilen ve (triizopropilsilil)etinil gruplarının indeno[1,2-b]floren π-merkezine dahil edilmesi, tamamen akseptör tipinde π-konjuge yapının oluşmasına sebep olmaktadır. Söz konusu yeni moleküller, 2,8- (triizopropilsilil)etinil-indeno[1,2-b]floren-6,12-dion (TIPS-IFDK) ve 2,8-(triizopropilsilil)etinil-indeno[1,2-b]floren-6,12-bis(disiyanoviinilen) (TIPS-IFDM)'dir. Yeni bileşiklerin HOMO/LUMO enerjileri sırasıyla TIPS-IFDK için -5.77 / -3.65 eV ve TIPS-IFDM için -5.84 / -4.18 eV'dir. Daha önce geliştirilen donör-akseptör tipi indenofluorenler ile kıyaslandığında tamamen akseptör yapıda π-konjuge sisteme sahip oldukları için yeni moleküllerin optik bant aralıklarında artış gözlemlenmiştir. (TIPS-IFDK için 2.12 eV ve TIPS-IFDM için 1.66 eV) TIPS-IFDK ve TIPS-IFDM yarı-iletkenlerinin katı-hal düzenlemeleri ve moleküller arası π-π etkileşimleri, tek kristal X-ray difraksiyon (XRD) analizi ile incelenmiştir. Söz konusu yarı-iletkenler katı halde 1-D kolon yapısı ortaya koymuştur. Bu tez kapsamında geliştirilen TIPS-IFDM yarı-iletkeni kullanılarak, solüsyon-makaslama (solution-shearing) yöntemi ile alt kapı/üst temas organik alan etkili transistörler üretilmiştir. Havada son derece kararlı olan söz konusu transistörler n-tipi yük taşıma karakterinde olup, 0.02 cm2/Vs elektron hareketliliği, 107 Ion/Ioff oranı sergilemiştir. Buna rağmen bu tez kapsamında geliştirilen diğer molekül TIPS-IFDK, TIPS-IFDM ile kıyaslandığında 103 kat daha az elektron hareketliliği ortaya koymuştur. Bu durum TIPS-IFDK molekülünün zayıf π-π etkileşimleri ve ince-film fazında zayıf kristal yapısından kaynaklanmaktadır. Dolayısıyla TIPS-IFDK tabanlı OFET'ler havada kararlı değildir. (trialkilsilil)etinil grubunun HOMO/LUMO orbitalleri üzerindeki elektronik etkileri DFT hesaplamaları ile ortaya çıkarıldı. Bildiğimiz kadarıyla, TIPS-IFDM, uzun moleküler eksen (x) boyunca (trialkilsilil) etinil gruplarıyla fonksiyonel hale getirilmiş, çözücüde proses edilebilen, havada kararlı, n-tipi moleküler yarı iletkenlerin ilk örneğidir. Elde ettiğimiz sonuçlar, havada kararlı n-tipi organik alan etkili transistörler ve çeşitli organik optoelektronik teknoloji uygulamaları için kolay sentezlenebilir, solüsyondan proses edilebilir yeni molekülerin nasıl dizayn edileceği noktasında önemli bilgiler vermektedir. Bu alanlarda ilerde yapılacak araştırmalara ışık tutmaktadır.
  • Article
    Citation - Scopus: 1
    N-Type Molecular Thermoelectrics Based on Solution-Doped Indenofluorene-Dimalononitrile: Simultaneous Enhancement of Doping Level and Molecular Order
    (Wiley, 2025) Wang, Suhao; Wei, Huan; Rillaerts, Antoine; Deneme, Ibrahim; Depriester, Michael; Manikandan, Suraj; Pisula, Wojciech
    The development of n-type organic thermoelectric materials, especially pi-conjugated small molecules, lags far behind their p-type counterparts, due primarily to the scarcity of efficient electron-transporting molecules and the typically low electron affinities of n-type conjugated molecules that leads to inefficient n-doping. Herein, the n-doping of two functionalized (carbonyl vs dicyanovinylene) indenofluorene-based conjugated small molecules, 2,8-bis(5-(2-octyldodecyl)thien-2-yl)indeno[1,2-b]fluorene-6,12-dione (TIFDKT) and 2,2 '-(2,8-bis(3-alkylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile (TIFDMT) are demonstrated, with n-type dopant N-DMBI. While TIFDKT shows decent miscibility with N-DMBI, it can be hardly n-doped owing to its insufficiently low LUMO. On the other hand, TIFDMT, despite a poorer miscibility with N-DMBI, can be efficiently n-doped, reaching a respectable electrical conductivity of 0.16 S cm-1. Electron paramagnetic resonance measurements confirm the efficient n-doping of TIFDMT. Based on density functional theory (DFT) calculations, the LUMO frontier orbital energy of TIFDMT is much lower, and its wave function is more delocalized compared to TIFDKT. Additionally, the polarons are more delocalized in the n-doped TIFDMT. Remarkably, as indicated by the grazing-incidence wide-angle X-ray scattering (GIWAXS), the molecular order for TIFDMT thin-film is enhanced by n-doping, leading to more favorable packing with edge-on orientation and shorter pi-pi stacking distances (from 3.61 to 3.36 & Aring;). This induces more efficient charge transport in the doped state. Upon optimization, a decent thermoelectric power factor of 0.25 mu Wm-1K-2 is achieved for n-doped TIFDMT. This work reveals the effect of carbonyl vs dicyanovinylene on the n-doping efficiency, microstructure evolution upon doping and thermoelectric performance, offering a stepping stone for the future design of efficient n-type thermoelectric molecules. N-doping of two functionalized (carbonyl vs dicyanovinylene) indenofluorene-based conjugated small molecules TIFDKT and TIFDMT is investigated. Remarkably, TIFDMT with a much lower LUMO energy, can be efficiently n-doped to a respectable electrical conductivity of 0.16 S cm-1. Moreover, n-doping of TIFDMT leads to more favorable packing and shorter pi-pi stacking distances, resulting in efficient charge transport in the doped state. image
  • Article
    Labyrinthine Microstructures With a High Dipole Moment Boron Complex for Molecular Physically Unclonable Functions
    (American Chemical Society, 2025) Yıldız, T.A.; Kiremitler, N.B.; Kayacı, N.; Kalay, M.; Özcan, E.; Deneme, I.; Usta, H.
    The design and development of novel molecular-physically unclonable functions (PUFs) with advanced encoding characteristics and ease of fabrication have recently attracted attention in cryptography, secure authentication, and anticounterfeiting. Here, we report the development of a new high dipole-moment small molecule, InIm-BF2, a difluoroborate complex of an indolyl-imine ligand, and the fabrication of unique labyrinthine patterns through a facile two-step thin film process under ambient conditions. The new molecule has a dipolar, coplanar π-backbone and arranges in the solid state with antisymmetric cofacial π-stackings (3.86 Å). These properties, along with short C–H···π contacts (2.74–2.88 Å) and nonclassical C–H···F hydrogen bonds (2.47–2.51 Å) (23.4% and 11.5% of the Hirshfeld surfaces, respectively), drive the formation of amorphous molecular PUF patterns with disordered, short-range interactions. Spin-coating followed by thermal annealing at a moderate temperature produces nanoscopic molecular thin films with intricate labyrinthine patterns. These patterns, characterized by interconnected, irregularly shaped, micron-sized (≈50–100 μm) features, exhibit excellent PUF characteristics, verified through advanced image analysis and computational algorithms. Unlike randomly positioned isolated features in classical binarized keys, the interconnected labyrinthine patterns possess rich entropy and complex features, directly authenticated via deep-learning methodologies. Our work not only demonstrates a facile, promising approach to fabricating unique high-entropy PUF patterns but also provides critical insights into designing advanced molecular materials for next-generation security applications. © 2025 The Authors. Published by American Chemical Society
  • Article
    Citation - WoS: 16
    Citation - Scopus: 15
    Engineering Functionalized Low LUMO [1]Benzothieno[3,2-B][1]Benzothiophenes (BTBTs): Unusual Molecular and Charge Transport Properties
    (Royal Soc Chemistry, 2020) Ozdemir, Resul; Ahn, Kyunghan; Deneme, Ibrahim; Zorlu, Yunus; Kim, Dojun; Kim, Myung-Gil; Usta, Hakan
    Diacene-fused thienothiophenes (DAcTTs) have provided an excellent pi-framework for the development of high mobility p-type molecular semiconductors in the past decade. However, n-type DAcTTs are rare and their electron transport characteristics remain largely unexplored. Herein, a series of functionalized low LUMO (lowest unoccupied molecular orbital) [1]benzothieno[3,2-b][1]benzothiophene (BTBT)-based small molecules, D(C7CO)-BTBT, C7CO-BTBT-CC(CN)(2)C-7, and D(C7CC(CN)(2))-BTBT, have been developed. Detailed structural, physicochemical, optoelectronic, and single-crystal characterization were performed. The new molecules exhibit large optical band gaps (similar to 2.8-3.1 eV) and highly stabilized (-Delta E-LUMO = 1.2-1.4 eV)/pi-delocalized LUMOs as compared to p-type DAcTTs. Symmetric functionalization is found to be important to enable strong intermolecular interactions in the solid-state. All molecules exhibit alternately stacked layers of "F-BTBT-F" and "S" (F: functional group/S: substituent) with strong herringbone-like interactions (2.8-3.6 angstrom distances) between pi-cores. While carbonyls, regardless of the substituent, adopt nearly coplanar pi-backbones with BTBT, dicyanovinylenes are found to be twisted (47.5 degrees). The conformational difference at the molecular level has unusual effects on the pi-electron deficiencies, frontier molecular orbital energetics, thermal/photophysical properties, and pi-electronic structures. Dicyanovinylenes at the 2,7 positions, despite twisted conformations, are shown for the first time to yield good electron transport in DAcTTs. The D(C7CC(CN)(2))-BTBT thin film exhibits large 2D plate-like crystalline grains (similar to 1-2 mu m sizes) of terraced islands and becomes a rare example of an n-type DAcTT in organic field-effect transistors (OFETs). Although a stabilized/pi-delocalized LUMO, largely governed by functional groups and intramolecular twists, is essential for electron transport, our findings suggest that it should be combined with proper substituents to yield a favorable three-dimensional BTBT/functional group pi-electronic structure and a low intramolecular reorganization energy. Combined with our first n-type DAcTT semiconductor D(PhFCO)-BTBT, a molecular library with systematically varied chemical structures has been studied herein for the first time for low LUMO DAcTTs. The molecular engineering perspectives presented in this study may give unique insights into the design of novel electron transporting thienoacenes for unconventional optoelectronics.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Stochastic Orientational Encoding via Hydrogen Bonding Driven Assembly of Woven-Like Molecular Physically Unclonable Functions
    (Wiley-VCH Verlag GmbH, 2025) Kayaci, Nilgun; Kiremitler, Nuri Burak; Deneme, Ibrahim; Kalay, Mustafa; Ozbasaran, Aleyna; Zorlu, Yunus; Usta, Hakan
    The prevention of counterfeiting and the assurance of object authenticity require stochastic encoding schemes based on physically unclonable functions (PUFs). There is an urgent need for exceptionally large encoding capacities and multi-level responses within a molecularly defined, single-material system. Herein, a novel stochastic orientational encoding approach is demonstrated using a facile ambient-atmosphere solution processing of a molecular thin film based on the rod-shaped oligo(p-phenyleneethynylene) (OPE) pi-architecture. The nanoscopic film, derived from the small molecule 2EHO-CF3PyPE with donor, acceptor, and pi-spacer building units, is designed for energetically favorable uniaxial molecular assembly and crystal growth via directional multiple hydrogen-bonding motifs at the molecular termini and short C & horbar;Hpi contacts at the center. A facile solvent vapor annealing induces concurrent dewetting and microscopic 1D random crystallization, yielding a woven-textured random features. Using convolutional neural networks, the rich variations in microcrystal domain properties and stochastic encoding of 1D crystal orientations generate artificial coloration, achieving an encoding capacity reaching (6.5 x 10(4))(2752 x 2208). The results demonstrate an effective strategy for achieving ultrahigh encoding capacities in a thin film composed of a single-material. This approach enables low-cost, solution-processed fabrication for mass production and broad adoption, while opening new opportunities to explore molecular-PUFs through structural design and engineering noncovalent interactions.
  • Article
    Citation - WoS: 47
    Citation - Scopus: 44
    Enabling Three-Dimensional Porous Architectures via Carbonyl Functionalization and Molecular-Specific Organic-SERS Platforms
    (Nature Portfolio, 2021) Deneme, Ibrahim; Liman, Gorkem; Can, Ayse; Demirel, Gokhan; Usta, Hakan
    Nanostructured films of organic semiconductors with low lying LUMO orbitals can enhance Raman signals via a chemical enhancement mechanism but currently the material choice is limited to fluorinated oligothiophenes. Here, the authors investigate the growth of a porous thienoacene film enabled by carbonyls and demonstrate molecular specific organic-SERS platforms. Molecular engineering via functionalization has been a great tool to tune noncovalent intermolecular interactions. Herein, we demonstrate three-dimensional highly crystalline nanostructured D(C7CO)-BTBT films via carbonyl-functionalization of a fused thienoacene pi-system, and strong Raman signal enhancements in Surface-Enhanced Raman Spectroscopy (SERS) are realized. The small molecule could be prepared on the gram scale with a facile synthesis-purification. In the engineered films, polar functionalization induces favorable out-of-plane crystal growth via zigzag motif of dipolar C = O center dot center dot center dot C = O interactions and hydrogen bonds, and strengthens pi-interactions. A unique two-stage film growth behavior is identified with an edge-on-to-face-on molecular orientation transition driven by hydrophobicity. The analysis of the electronic structures and the ratio of the anti-Stokes/Stokes SERS signals suggests that the pi-extended/stabilized LUMOs with varied crystalline face-on orientations provide the key properties in the chemical enhancement mechanism. A molecule-specific Raman signal enhancement is also demonstrated on a high-LUMO organic platform. Our results demonstrate a promising guidance towards realizing low-cost SERS-active semiconducting materials, increasing structural versatility of organic-SERS platforms, and advancing molecule-specific sensing via molecular engineering.
  • Article
    Achieving Extreme Solubility and Green Solvent-Processed Organic Field-Effect Transistors: A Viable Asymmetric Functionalization of [1]Benzothieno[3,2-B][1]Benzothiophenes
    (American Chemical Society, 2025) Yıldız, T.A.; Deneme, İ.; Usta, H.
    Novel structural engineering strategies for solubilizing high-mobility semiconductors are critical, which enables green solvent processing for eco-friendly, sustainable device fabrication, and unique molecular properties. Here, we introduce a viable asymmetric functionalization approach, synthesizing monocarbonyl [1]benzothieno[3,2-b][1]benzothiophene molecules on a gram scale in two transition-metal-free steps. An unprecedented solubility of up to 176.0 mg·mL–1(at room temperature) is achieved, which is the highest reported to date for a high-performance organic semiconductor. The single-crystal structural analysis reveals a herringbone motif with multiple edge-to-face interactions and nonclassical hydrogen bonds involving the carbonyl unit. The asymmetric backbones adopt an antiparallel arrangement, enabling face-to-face π-π interactions. The mono(alkyl-aryl)carbonyl-BTBT compound, m-C6PhCO-BTBT enables formulations in varied green solvents, including acetone and ethanol, all achieving p-channel top-contact/bottom-gate OFETs in ambient conditions. Charge carrier mobilities of up to 1.87 cm2/V·s (μeff≈ 0.4 cm2/V·s; Ion/Ioff≈ 107–108) were achieved. To the best of our knowledge, this is one of the highest OFET performances achieved using a green solvent. Hansen solubility parameters (HSP) analysis, combined with Scatchard–Hildebrand regular solution theory and single-crystal packing analysis, elucidates this exceptional solubility and reveals unique relationships between molecular structure, interaction energy densities, cohesive energetics, and solute–solvent distances (Ra). An optimal solute–green solvent interaction distance in HSP space proves critical for green solvent-processed thin-film properties. This asymmetric functionalization approach, with demonstrated unique solubility insights, provides a foundation for designing green solvent-processable π-conjugated systems, potentially advancing innovation in sustainable (opto)electronics and bioelectronics. © 2025 Elsevier B.V., All rights reserved.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 13
    The Hansen Solubility Approach Towards Green Solvent Processing: N-Channel Organic Field-Effect Transistors Under Ambient Conditions
    (Royal Soc Chemistry, 2024) Deneme, Ibrahim; Yildiz, Tevhide Ayca; Kayaci, Nilgun; Usta, Hakan
    The adoption of green solvents is of utmost importance for the solution-based fabrication of semiconductor thin films and for the commercialization of (opto)electronic devices, especially in response to evolving regulatory mandates for handling organic materials. Despite the increasing interest in this area, the scarcity of green solvent-processed n-channel OFETs, especially functioning under ambient conditions, highlights the need for further research. In this study, we demonstrated the Hansen solubility approach to study the solubility behavior of an ambient-stable n-type semiconductor, 2,2' -(2,8-bis(3-dodecylthiophen-2-yl)indeno[1,2-b]fluorene-6,12-diylidene)dimalononitrile (beta,beta'-C-12-TIFDMT), and to analyze potential green solvents for thin-film processing. The Hansen solubility parameters were determined to be delta(D) = 20.8 MPa1/2, delta(P) = 5.8 MPa1/2, and delta(H) = 5.5 MPa1/2 with a radius (R-0) of 8.3 MPa1/2. A green solvent screening analysis based on the minimal distance constraint and quantitative sustainability score identified ethoxybenzene, anisole, 2-methylanisole, and 2-methyltetrahydrofuran as suitable green solvents (R-a's = 5.17-7.93 MPa1/2 < R-0). A strong thermodynamic correlation was identified between the solubility and the semiconductor-solvent distance in the 3D Hansen solubility space, in which the maximum solubility limit could be estimated with the enthalpy of fusion (Delta H-fus) and melting temperature (T-mp) of the semiconductor. To the best of our knowledge, this relationship between the maximum solubility limit and thermal properties has been established for the first time for organic semiconductors. Bottom-gate/top-contact OFETs fabricated by spin-coating the semiconductor green solutions exhibited mu es reaching similar to 0.2 cm(2) V-1 s(-1) (I-on/I-off similar to 10(6)-10(7) and V-on similar to 0-5 V) under ambient conditions. This device performance, to our knowledge, is the highest reported for an ambient-stable green solvent-processed n-channel OFET. Our HSP-based rational approach and unique findings presented in this study can shed critical light on how green solvents can be efficiently incorporated in solution processing in organic (opto)electronics, and whether ambient-stable n-type semiconductors can continue to play an important role in green OFETs.
  • Article
    Citation - WoS: 25
    Citation - Scopus: 25
    Triisopropylsilylethynyl-Substituted Indenofluorenes: Carbonyl Versus Dicyanovinylene Functionalization in One-Dimensional Molecular Crystals and Solution-Processed N-Channel Ofets
    (Royal Soc Chemistry, 2018) Ozdemir, Resul; Park, Sangyun; Deneme, Ibrahim; Park, Yonghan; Zorlu, Yunus; Alidagi, Husniye Ardic; Usta, Hakan
    The design and synthesis of novel electron-deficient and solution-processable polycyclic aromatic hydrocarbons offers great opportunities for the development of low-cost and large-area (opto)electronics. Although (trialkylsilyl)ethynyl (R3Si-C?C-) has emerged as a very popular unit to solubilize organic semiconductors, it has been applied only to a limited class of materials that are mostly substituted on short molecular axes. Herein, two novel solution-processable indenofluorene-based semiconductors, TIPS-IFDK and TIPS-IFDM, bearing (triisopropylsilyl)ethynyl end units at 2,8-positions (long molecular axis substitution) were synthesized, and their single-crystal structures, optoelectronic properties, solution-sheared thin-film morphologies/microstructures, and n-channel field-effect responses were studied. In accordance with the DFT calculations, the HOMO/LUMO energies of the new compounds are found to be -5.77/-3.65 eV and -5.84/-4.18 eV for TIPS-IFDK and TIPS-IFDM, respectively, reflecting the high electron deficiency of the new -backbones. Both semiconductors exhibit slightly S-shaped molecular frameworks with highly coplanar IFDK/IFDM -cores, and they form slipped -stacked one-dimensional (1-D) columnar motifs in the solid state. However, substantial differences in the degree of - interactions and stacking distances (4.04 angstrom vs. 3.47 angstrom) were observed between TIPS-IFDK and TIPS-IFDM as a result of carbonyl vs. dicyanovinylene functionalization, which results in a three orders of magnitude variation in the charge carrier mobility of the corresponding thin films. Top-contact/bottom-gate OFETs fabricated via solution-shearing TIPS-IFDM yielded one of the best performances in the (trialkylsilyl)ethynyl literature ((e) = 0.02 cm(2) V-1 s(-1), I-on/I-off = 10(7)-10(8), and V-T approximate to 2 V under ambient atmosphere) for a 1-D polycrystalline semiconductor microstructure. To the best of our knowledge, the molecules presented here are the first examples of n-type semiconductors substituted with (trialkylsilyl)ethynyl groups on their long molecular axes.
  • Doctoral Thesis
    Development of Novel Functional Organic Materials for Optoelectronic Applications
    (2024) Deneme, İbrahim; Usta, Hakan
    İlk bölümde, organik yarı iletkenlerin tasarımı ve uygulanmasındaki ve bunların (opto)elektronik uygulamalarındaki tarihsel ve güncel gelişmeleri gözden geçiriyoruz. Bu tezin ikinci bölümünde, π-elektron eksikliği olan düşük LUMO'lu bir BTBT molekülü olan 1,10-(benzo[b]benzo[4,5]thieno[2, 3-d]tiyofen-2,7-diil)bis(oktan-1-on) (D(C7CO)-BTBT), ki bu, n-heptil (-n-C7H15) süpstitüe edicileri ile birlikte 2,7-dikarbonil fonksiyonel grupları içeren bu molekül, herhangi bir yüksek maliyetli geçiş metali katalizörü ve uğraştırıcı kromatografik/süblimasyon bazlı saflaştırma gerektirmeden, kolay Friedel-Crafts asilasyonu ve çökeltme/çözücü yıkama yoluyla, hava ortamında gram ölçeğinde hazırlanmıştır. Bu tezin üçüncü bölümünde, ortam kararlı bir n-tipi yarı iletken olan 2,2'-(2,8-bis(3-dodesiltiofen-2-il)indeno[1,2-b]floren-6,12-diyliden)dimalononitrilin (β,β'-C12-TIFDMT) çözünürlük davranışını incelemek ve ince film işleme için potansiyel yeşil çözücüleri analiz etmek için Hansen çözünürlük yaklaşımını gösterdik. Bu tezin dördüncü bölümünde, bir heksil (n-C6H13) sübstitüenti ile mono-(aril)karbonil fonksiyonelleştirmesi kullanılarak BTBT π-sistemi üzerinde benzersiz bir moleküler mühendislik sunulmuş ve yeni bir asimetrik BTBT yarı iletkeni olan m-C6PhCO-BTBT'nin tasarımı, sentezi ve karakterizasyonu gösterilmiştir. Yeni molekül, iki aşamalı geçiş metali içermeyen bir sentez yoluyla gram ölçeğinde üretildi ve (opto) elektronik karakterizasyonlar gerçekleştirildi.