WoS İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/394
Browse
Browsing WoS İndeksli Yayınlar Koleksiyonu by WoS Q "Q1"
Now showing 1 - 20 of 618
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 1Cinnamomum Zeylanicum Extract Incorporated Electrospun Poly(Lactic Acid)/ Gelatin Membrane as a New Wound Dressing(Elsevier, 2025) Tarhan, Seray Zora; Pepe, Nihan Aktas; Sen, Alaattin; Isoglu, Ismail AlperIn this study, we fabricated poly(lactic acid)/gelatin electrospun membranes containing various concentrations of Cinnamomum zeylanicum extract and evaluated them as a novel wound dressing. The electrospun membranes were chemically, morphologically, and mechanically characterized, and the results were discussed in comparison with the literature. Electrospun membranes' biodegradability, swelling, and release properties were evaluated, with the CE7.5 membrane having values of 29.60 f 7.20 and 542.1 f 48.3 % and 66.9 %, respectively. Antibacterial activity was observed in CE7.5 and CE10 membranes against E. coli and S. aureus strains. At the highest concentration (CE10), 111.7 f 5.6 % and 96 f 12.375 % cell viability were detected in fibroblasts and differentiated LPS-induced THP-1 cells. Cell viability was further evaluated by Annexin-V/PI staining, revealing that 97.95 f 1.63 % of the cells remained viable in the CE7.5-treated membranes, while only 1.85 f 1.49 % of necrotic cells were detected in the treated cell population. Fibroblasts treated with the CE7.5 membrane showed a 42 % improvement in wound closure compared to non-treated cells. The anti-inflammatory properties of the electrospun membranes were also investigated. Treatment with the conditioned CE7.5 membrane downregulated Tba1 and tau proteins by 45.1 and 51.055 %, respectively. This study concluded that the newly developed Cinnamomum zeylanicum extract incorporated poly(lactic acid)/gelatin electrospun membranes could be a promising wound dressing material.Article Citation - WoS: 143Citation - Scopus: 190Extending the Technology Acceptance Model to Explain How Perceived Augmented Reality Affects Consumers' Perceptions(Pergamon-Elsevier Science Ltd, 2022) Oyman, Mine; Bal, Dondu; Ozer, SerhatToday, reaching consumers through interactive methods has become one of the primary goals of the brands. As a result of this, smartphones have turned into tools brands can use to start an interaction with consumers. Due to augmented reality (AR)-supported mobile applications, brands can both provide consumers with detailed information about products and services, and also affect consumers' perceptions. The main purpose of this research is to determine the effect of augmented reality use in mobile applications on consumers' behavioral intentions towards the use of the mobile application and perceptions underlying this effect. In this study, by employing the Technology Acceptance Model (TAM), the effect of augmented reality on behavioral intentions for mobile application use was examined through a structural equation modeling (SEM). Additionally, the effects of the technology anxiety (TA) and consumer novelty seeking (CNS) on perceived augmented reality were also examined. An augmented reality-supported mobile application which makes trying cosmetic products virtually on possible, was used by female consumers (n = 278). The data was collected through a questionnaire. The results indicated that the CNS had a positive and direct effect on perceived augmented reality (PAR); PAR had a positive and direct effect on perceived enjoyment (PE), perceived usefulness (PU), perceived informativeness (PI), and perceived ease of use (PEU). It was also determined that the PE, PU, PI had positive and direct effects on the behavioral intentions to use the application (BIUA).Conference Object Is the Homozygous Mutation Pattern Reminding Uniparental Disomy on DHCR7 Gene Responsible for Smith-Lemli (SLO) Syndrome(Springernature, 2024) Kosem, Zeyneb Berrin; Sunar, Ilknur; Demircioglu, Ayse Sena; Akarsu, Rukiye; Gencay, Ismail; Akalin, IbrahimArticle Citation - WoS: 5Citation - Scopus: 4Cyclists as Intelligent Carriers of Space-Time Environmental Information: Crowd-Sourced Sensor Data for Local Air Quality Measurement and Mobility Analysis in the Netherlands(Routledge Journals, Taylor & Francis Ltd, 2023) Kourtit, Karima; Nijkamp, Peter; Osth, John; Turk, UmutIn recent years, slow travel modes (walking, cycling) have gained much interest in the context of urban air quality management. This article presents the findings from a novel air quality measurement experiment in the Netherlands, by regarding cyclists as carriers and transmitters of real-world information on fine-grained air quality conditions. Using individual sensors on bicycles-connected to a GPS positioning system-online local pollution information originating from cyclists' detailed spatial mobility patterns is obtained. Such air quality surface maps and cyclists' mobility maps are then used to identify whether there are significant differences between the actual route choice and the cyclists' shortest route choice, so as to identify the implications of poor air quality conditions for their mobility choices. Thus, the article seeks to present both a detailed pollution surface map and the complex space-time mobility patterns of cyclists in a region, on the basis of online quantitative data-at any point in time and space-from bicycle users in a given locality. In addition, the article estimates their response-in terms of route choice-to detailed air-quality information through the use of a novel geoscience-inspired analysis of space-time "big data." The empirical test of our quantitative modeling approach was carried out for the Greater Utrecht area in the Netherlands. Our findings confirm that spatial concentration of air pollutants have great consequences for bike users' route choice patterns, especially in the case of non-commuting trips. We also find that cyclists make longer trips on weekends and in the evenings, especially towards parks and natural amenities.Article Citation - WoS: 22Citation - Scopus: 27Exploring Flood and Erosion Risk Indices for Optimal Solar PV Site Selection and Assessing the Influence of Topographic Resolution(Pergamon-Elsevier Science Ltd, 2023) Yilmaz, Kutay; Dincer, Ali Ersin; Ayhan, Elif N.This study explores the suitability of Mentes,e Region in Turkiye for the installation of solar PV farms, given the significant increase in energy demand in the country and the need to reduce reliance on fossil fuels. The Analytical Hierarchy Process (AHP) method, which has been widely used in previous studies, is employed to identify the most influential criteria for site selection, including environmental, economic, and social factors. However, this study introduces two new factors, flood hazard and erosion indices, to the analysis, which are crucial in areas susceptible to these hazards. The results show that approximately 7.5% of the study surface area is suitable for solar PV production. The study reveals that flood hazard and erosion indices have an effect on the suitable sites despite their relatively lower weights in the AHP. In addition, the study illustrates that site selection can be carried out using topographic data of lower resolution, as long as the data is resampled to match the resolution of land use data. The study is novel in its integration of flood and erosion risk indices in the decision process and its investigation of the influence of topographic resolution on site selection for solar PV panels.Article Phase-Synchronized Fluidic Oscillator Pair(AMER INST AERONAUTICS ASTRONAUTICS, 1801 ALEXANDER BELL DRIVE, STE 500, RESTON, VA 22091-4344 USA, 2019) Tomac, Mehmet N; Gregory, James W.The relative phase of oscillating jets from a pair of fluidic oscillators was synchronized in this work. The means for this synchronization was mutual interaction through a shared feedback channel between the two oscillators. Flow visualization and hot-wire measurements indicated a strong correlation and phase synchronization between the two oscillators. A numerical analysis offered better understanding of the internal flow physics that led to the synchronization phenomenon. A portion of the output jet from one fluidic oscillator was redirected and crossed over into the adjacent oscillator, leading to momentum transfer between the two oscillators. A portion of this cross-oscillator flow was directed into the shared feedback channel and constituted the main feedback flow. In this process, one of the shared feedback channel outlets was blocked by a vortex, allowing only one oscillator to receive feedback flow. The primary mechanism for in-phase synchronization was the cross-oscillator flow, which was divided into phase-modulated momentum injection to the primary jet and modulated flow input to the shared channel feedback channel.Article Citation - WoS: 28Citation - Scopus: 30A New Parameter Influencing the Reaction Kinetics and Properties of Fly Ash Based Geopolymers: A Pre-Rest Period Before Heat Curing(Elsevier, 2021) Durak, Ugur; Ilkentapar, Serhan; Karahan, Okan; Uzal, Burak; Atis, Cengiz DuranIn this study, the influence of a pre-rest period before heat curing (as a new parameter), on the physical properties, flexural and compressive strength, and microstructure of geopolymer mortars and pastes produced with alkali activation of fly ash were investigated. In this context, geopolymer mortar and paste samples were prepared and pre-rested under laboratory conditions for 0, 1, 2, 3, 7, 14, and 28 days before heat curing. After the pre-rest period, the samples were subjected to heat curing at 75 degrees C in an oven, for 2 days. Mortar and paste samples exposed to a pre-rest period while in the fresh state before heat curing were compared with control samples without pre-resting. Water absorption, porosity, specific gravity, capillarity, flexural strength, compressive strength, and abrasion resistance tests were conducted on the geopolymer mortar samples. A reaction kinetics study using an isothermal calorimeter, XRD, and SEM analyses were performed on the geopolymer paste samples for microstructural investigations. Based on the results obtained, it was observed that the mechanical strength of the samples subjected to the pre-rest period before heat curing increased considerably compared to the reference (without pre-resting) samples. In addition, because of pre-resting, the capillarity coefficient, water permeability, and porosity of the samples decreased compared to the reference samples, and it was concluded that pre-resting improves durability-related properties. Moreover, the reaction kinetics and SEM analysis results, supporting the above findings, showed that a pre-resting period increases the geopolymeric reaction products and causes a denser microstructure.Article Citation - WoS: 16Citation - Scopus: 16Hexagonal Nanosheets in Amorphous BN: A First Principles Study(Elsevier Science Bv, 2015) Durandurdu, MuratAmorphous boron nitrite is modeled by means of first principles molecular dynamics simulations and found to be almost chemically ordered in a stark contrast to the previous predictions. Its average coordination number is 2.97. The main building unit of the amorphous network is hexagonal rings as in the most stable boron nitrite phase but chain-like structures and tetragonal-like rings also exist in amorphous network. The model consists of partially hexagonal nanosheets and hence it is not entirely disordered. Amorphous boron nitrite has a band gap energy of about 2.0 eV. (C) 2015 Elsevier B.V. All rights reserved.Article Citation - WoS: 29Citation - Scopus: 41Optimisation of the Reaction Conditions for the Production of Cross-Linked Starch With High Resistant Starch Content(Elsevier Sci Ltd, 2015) Kahraman, Kevser; Koksel, Hamit; Ng, Perry K. W.The optimum reaction conditions (temperature and pH) for the preparation of cross-linked (CL) corn and wheat starches with maximum resistant starch (RS) content were investigated by using response surface methodology (RSM). According to the preliminary results, five levels were selected for reaction temperature (38-70 degrees C) and pH (10-12) in the main study. RS contents of the CL corn and wheat starch samples increased with increasing temperature and pH, and pH had a greater influence on RS content than had temperature. The maximum RS content (with a maximum p value of 0.4%) was obtained in wheat starch cross-linked at 38 degrees C and pH 12. In the case of CL corn starch, the optimum condition was 70 degrees C and pH 12. CL corn and wheat starch samples were also produced separately under the optimum conditions and their RS contents were 80.4% and 83.9%, respectively. These results were also in agreement with the values predicted by RSM. (C) 2014 Elsevier Ltd. All rights reserved.Article Citation - WoS: 18Citation - Scopus: 21Synthesis of L-Cysteine Capped Silver Nanoparticles in Acidic Media at Room Temperature and Detailed Characterization(Springer, 2018) Panhwar, Sallahuddin; Hassan, Syeda Sara; Mahar, Rasool Bux; Canlier, Ali; Sirajuddin; Arain, MunazzaThis work reports a simple and one pot synthesis of water dispersible l-cysteine stabilized silver nanoparticles (l-CYS-AgNPs) in an acidic media. Silver nanoparticles were synthesized within few minutes of reaction time (< 5 min) at room temperature without needing to heat and use of any hazardous organic solvents. Prepared nanoparticles were characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, X-ray diffraction and zeta potential analysis, respectively. Surface plasmon resonance band of AgNPs which was observed at 392 nm by UV-Visible spectroscopy indicated successful formation of l-CYS-AgNPs in acidic media. Imaging techniques showed that AgNPs possess spherical morphology and average size of 25 nm. Nanoparticles were stable for more than 2 months when stored at ambient temperature. This approach is a facile and rapid one pot synthesis which can be stored as a homogenous aqueous dispersion for more than 2 months. Being stabilized by a sulfur-containing amino acid (l-cysteine) and the synthesis carried out in a moderately acidic media (pH 5.3) are distinctive aspect of this work. These stable l-CYS-AgNPs could be used as a catalyst and sensor applications for advanced perspective against water pollution and industrial effluents.Article Citation - WoS: 35Citation - Scopus: 35Glucose-Dependent Anaplerosis in Cancer Cells Is Required for Cellular Redox Balance in the Absence of Glutamine(Nature Portfolio, 2016) Cetinbas, Naniye Malli; Sudderth, Jessica; Harris, Robert C.; Cebeci, Aysun; Negri, Gian L.; Yilmaz, Oemer H.; Sorensen, Poul H.Cancer cells have altered metabolism compared to normal cells, including dependence on glutamine (GLN) for survival, known as GLN addiction. However, some cancer cell lines do not require GLN for survival and the basis for this discrepancy is not well understood. GLN is a precursor for antioxidants such as glutathione (GSH) and NADPH, and GLN deprivation is therefore predicted to deplete antioxidants and increase reactive oxygen species (ROS). Using diverse human cancer cell lines we show that this occurs only in cells that rely on GLN for survival. Thus, the preference for GLN as a dominant antioxidant source defines GLN addiction. We show that despite increased glucose uptake, GLN addicted cells do not metabolize glucose via the TCA cycle when GLN is depleted, as revealed by C-13-glucose labeling. In contrast, GLN independent cells can compensate by diverting glucose-derived pyruvate into the TCA cycle. GLN addicted cells exhibit reduced PDH activity, increased PDK1 expression, and PDK inhibition partially rescues GLN starvation-induced ROS and cell death. Finally, we show that combining GLN starvation with pro-oxidants selectively kills GLN addicted cells. These data highlight a major role for GLN in maintaining redox balance in cancer cells that lack glucose-dependent anaplerosis.Article Citation - WoS: 53Citation - Scopus: 59Thickness-Tunable Self-Assembled Colloidal Nanoplatelet Films Enable Ultrathin Optical Gain Media(Amer Chemical Soc, 2020) Erdem, Onur; Foroutan, Sina; Gheshlaghi, Negar; Guzelturk, Burak; Altintas, Yemliha; Demir, Hilmi VolkanWe propose and demonstrate construction of highly uniform, multilayered superstructures of CdSe/CdZnS core/shell colloidal nanoplatelets (NPLs) using liquid interface self-assembly. These NPLs are sequentially deposited onto a solid substrate into slabs having monolayer-precise thickness across tens of cm(2) areas. Because of near-unity surface coverage and excellent uniformity, amplified spontaneous emission (ASE) is observed from an uncharacteristically thin film having 6 NPL layers, corresponding to a mere 42 nm thickness. Furthermore, systematic studies on optical gain of these NPL superstructures having thicknesses ranging from 6 to 15 layers revealed the gradual reduction in gain threshold with increasing number of layers, along with a continuous spectral shift of the ASE peak (similar to 18 nm). These observations can be explained by the change in the optical mode confinement factor with the NPL waveguide thickness and propagation wavelength. This bottom-up construction technique for thickness-tunable, three-dimensional NPL superstructures can be used for large-area device fabrication.Article Citation - WoS: 75Citation - Scopus: 74Perfluoroalkyl-Functionalized Thiazole Thiophene Oligomers as N-Channel Semiconductors in Organic Field-Effect and Light-Emitting Transistors(Amer Chemical Soc, 2014) Usta, Hakan; Sheets, William Christopher; Denti, Mitchell; Generali, Gianluca; Capelli, Raffaella; Lu, Shaofeng; Facchetti, AntonioDespite their favorable electronic and structural properties, the synthetic development and incorporation of thiazole-based building blocks into n-type semiconductors has lagged behind that of other pi-deficient building blocks. Since thiazole insertion into pi-conjugated systems is synthetically more demanding, continuous research efforts are essential to underscore their properties in electron-transporting devices. Here, we report the design, synthesis, and characterization of a new series of thiazolethiophene tetra- (1 and 2) and hexa-heteroaryl (3 and 4) co-oligomers, varied by core extension and regiochemistry, which are end-functionalized with electron-withdrawing perfluorohexyl substituents. These new semiconductors are found to exhibit excellent n-channel OFET transport with electron mobilities (mu(e)) as high as 1.30 cm(2)/(V center dot s) (I-on/I-off > 10(6)) for films of 2 deposited at room temperature. In contrary to previous studies, we show here that 2,2'-bithiazole can be a very practical building block for high-performance n-channel semiconductors. Additionally, upon 2,2'- and 5,5'-bithiazole insertion into a sexithiophene backbone of well-known DFH-6T, significant charge transport improvements (from 0.0010.021 cm(2)/(V center dot s) to 0.200.70 cm(2)/(V center dot s)) were observed for 3 and 4. Analysis of the thin-film morphological and microstructural characteristics, in combination with the physicochemical properties, explains the observed high mobilities for the present semiconductors. Finally, we demonstrate for the first time implementation of a thiazole semiconductor (2) into a trilayer light-emitting transistor (OLET) enabling green light emission. Our results show that thiazole is a promising building block for efficient electron transport in ?-conjugated semiconductor thin-films, and it should be studied more in future optoelectronic applications.Article Citation - WoS: 2Citation - Scopus: 2Investigating Strain Rate Effects on Damage Mechanisms in Hybrid Laminated Composites Using Acoustic Emission(Elsevier Sci Ltd, 2025) Gulsen, Abdulkadir; Kolukisa, Burak; Etcil, Mustafa; Caliskan, Umut; Zafar, Hafiz Muhammad Numan; Demirbas, Munise Didem; Bakir-Gungor, BurcuHybrid composites, which combine distinct fiber types such as carbon, basalt, and aramid, provide a synergistic balance of strength, stiffness, impact resistance, and energy dissipation, making them appealing for critical applications in aerospace, automotive, and other high-performance industries. Monitoring damage progression in these composites is vital for ensuring structural integrity and preventing catastrophic failures. Acoustic emission (AE) serves as a powerful, noninvasive technique for real-time structural health monitoring, capturing the transient stress waves generated when damage events occur. This study utilizes AE to examine the influence of strain rate on damage modes in carbon/basalt/aramid hybrid composites under three-point bending. An unsupervised feature selection based on Laplacian scores is employed to identify the most relevant AE features with damage modes, while SHapley Additive Explanations (SHAP) are used to evaluate the correlation between AE features and strain rates. The correlation analysis results indicate that peak frequency (PF) serves as a key indicator, demonstrating significant shifts at higher strain rates. Gaussian Mixture Model (GMM) clustering is used to analyze hybrid composites by examining clustered AE signals based on selected features identified through Laplacian scores, with Silhouette scores employed to determine the optimal number of clusters. This study highlights the role of AE in understanding fiber interactions and damage evolution, offering valuable insights into the mechanical performance and optimization of carbon/basalt/aramid hybrid composite structures.Article Citation - WoS: 7Citation - Scopus: 7Stress and Damage Distribution Analysis of Steel Reinforced Geopolymer Concrete Beams: Finite Element Method and Experimental Comparison Under Varying Design Parameters(Elsevier, 2025) Ozbayrak, Ahmet; Kucukgoncu, Hurmet; Aslanbay, Huseyin Hilmi; Aslanbay, Yuksel GulGeopolymer concrete (GPC) is a sustainable and eco-friendly alternative to ordinary Portland cement-based concrete (OPC). However, its application in reinforced concrete structures remains limited due to insufficient research on structural performance. This study examines the effects of tensile reinforcement ratio, sodium silicate/sodium hydroxide ratio, and curing method on GPCreinforced concrete (GPC-RC) beams. Experimental and numerical bending tests were performed on GPC and OPC beams with similar tensile reinforcement and strength properties. Load- displacement and moment-curvature relationships were obtained and compared, while stress and stiffness behaviors were analyzed numerically. The results show that curing methods and reinforcement ratios significantly influence GPC beam behavior. In GPC samples, numerical and experimental displacement and load values differed by approximately 10 % at both yield and ultimate points. For OPC, these differences were 35 % and 14 % at the yield point and 17 % and 25 % at the ultimate point. GPC exhibited distinct stress and damage distribution characteristics compared to OPC. The finite element models were statistically validated, confirming their consistency with experimental results. These findings contribute to the understanding of GPC's structural behavior and provide guidance for its design and optimization in reinforced concrete applications.Article Effect of Yttrium/Lanthanum-Doped Ultrasonically Assisted Nano-Hydroxyapatite on Remineralization and Bracket Bond Strength in Artificial Enamel Lesions(BMC, 2025) Ozturk, Taner; Mammadov, Elshan; Bulduk Karakaya, Humeyra; Yagci, Filiz; Dayan, Serkan; Yagci, AhmetBackground This in vitro study aimed to evaluate the remineralization efficacy of ultrasonically assisted yttrium fluoride-doped (Ult-YF3-nHAP) and lanthanum fluoride-doped (Ult-LaF3-nHAP) nano-hydroxyapatite (nHAP) on artificially induced enamel lesions (aWSLs), and to compare their performance with acidulated phosphate fluoride (APF) gel, fluoride varnish, casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), and resin infiltrant (ICON). Methods This in vitro study followed a four-phase design: enamel lesion creation, application of remineralization agents, a 14-day treatment protocol, and post-treatment analyses using QLF, Micro-CT, SEM-EDX, and SBS testing. This study included 168 extracted human premolars, divided into eight experimental groups (n = 21 per group): (1) Demineralized control (no remineralization treatment), (2) Acidulated phosphate fluoride (APF) gel, (3) Fluoride varnish, (4) Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP), (5) Ultrasonically assisted nHAP (Control nHAP), (6) Ult-YF3-nHAP, (7) Ult-LaF3-nHAP, and (8) Resin infiltrant (ICON). The aWSLs were created under laboratory conditions. Brackets were bonded to the teeth with composite material, and aWSLs were created under laboratory conditions. After lesion formation and at the end of the experimental process, micro-computed tomography (Micro-CT) and laser-assisted quantitative light fluorescence (QLF) analysis were performed to assess lesion progression and remineralization. Additionally, scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) and shear bond strength (SBS) tests were conducted at the end of the study. Statistical analysis was performed using one-way ANOVA, Kruskal-Wallis, and Mann-Whitney U tests, with a significance level of p < 0.05. Results The bracket bond strength test data showed no significant differences between the groups (p = 0.156). Significant differences were found among groups for QLF fluorescence recovery (Delta F, p < 0.001), with the Ult-YF3-nHAP group showing the greatest increase (median: +0.5, IQR: -1.4 to + 0.7), while the control group showed the greatest decrease (median: -12.1, IQR: -12.4 to -10.2). Micro-CT analysis also revealed significant differences between groups (p = 0.008). The APF Gel group showed values comparable to those of all other experimental groups. The highest remineralization values were recorded in the Ult-YF3-nHAP group (6.87 +/- 3.03 mm(3)), whereas the lowest values were found in the Varnish group. The demineralized control group had significantly higher values than the Varnish group, but lower than the Ult-LaF3-nHAP group. SEM-EDX analysis revealed that fluoride weight was significantly lower in the Tooth Mousse and Varnish groups compared to the other experimental groups (p < 0.001). Ca/P ratio was significantly lower in the demineralized control, Varnish, and Ult-YF3-nHAP groups than in other experimental groups (p = 0.002). Conclusion Ult-YF3-nHAP showed higher efficacy in remineralization of aWSLs compared to fluoride-based treatments, CPP-ACP, and resin infiltrant. The highest remineralization was detected in the Ult-YF3-nHAP group by micro-CT and QLF analysis, while fluoride varnish gave the lowest result.Article Citation - WoS: 3Citation - Scopus: 4Investigating the Carbon Border Adjustment Mechanism Transition Process With Linguistic Summarization Method: A Situational Analysis of Exporting Countries(Elsevier Sci Ltd, 2024) Fidan, Fatma Sener; Aydogan, Sena; Akay, DiyarThe Paris Agreement holds significant importance since it establishes a global framework for addressing the issue of climate change and endeavors to mitigate the release of greenhouse gases. The Carbon Border Adjustment Mechanism was introduced as an integral component of this agreement, aiming to oversee the carbon emissions associated with imported items within the European Union and provide compensation for the emissions from the nations engaged in importation. It is essential to analyze the countries involved in exporting to the European Union within the Carbon Border Adjustment Mechanism context to mitigate carbon leakage and effectively support the objectives outlined in the Paris Agreement. This research investigated 104 nations engaged in exporting activities to 27 European Union member countries. The linguistic summarization method, a descriptive data analytics tool, was employed for the analysis. A total of 42 Combined Nomenclature codes were encompassed within the scope of evaluation throughout the transition phase of the Carbon Border Adjustment Mechanism. This study examines the characteristics of exporting nations based on three variables: The Environmental Performance Index, a sustainability indicator; the Region in which the countries are located as classified by the World Bank; and the quantity of Renewable Energy Consumption. Additionally, the study explores the characteristics of EU countries, focusing on their Environmental Performance Index score and geography. The study employed fuzzy sets and the fuzzy c-means algorithm as parts of the linguistic summarization technique. Polyadic quantifiers were used to extract linguistic summaries, resulting in the acquisition of 124,227 summaries. A total of 1594 summaries have a truth degree exceeding 0.9. The findings were effectively utilized to assess the influence of the linguistic summarization approach and offered a valuable viewpoint for decisionmakers needing more expertise in this domain.Article Citation - WoS: 80Citation - Scopus: 90Alkali Activation of Mortars Containing Different Replacement Levels of Ground Granulated Blast Furnace Slag(Elsevier Sci Ltd, 2012) Bilim, Cahit; Atis, Cengiz DuranThe aim of the present study is to investigate some properties of alkali-activated mortars containing slag at different replacement levels. Ground granulated blast furnace slag was used at 0%, 20%, 40%, 60%, 80% and 100% replacement by weight of cement, and liquid sodium silicate having three different Na dosages was chosen as the alkaline activator. In this research, carbonation resistance measurements and compressive and flexural strength tests were performed on the mortar specimens with size of 40 x 40 x 160 mm. The findings obtained from the tests showed that carbonation depth values of the mortars decreased with the increase of activator dosage. Additionally, compressive and flexural strength values increased with the increase in activator concentration and slag replacement level. Portland cement/slag mortars activated by liquid sodium silicate exhibited lower strength than the slag alone activated by the same activator. (C) 2011 Elsevier Ltd. All rights reserved.Article Citation - WoS: 37Citation - Scopus: 39Spectrally Wide-Range Efficient, and Bright Colloidal Light-Emitting Diodes of Quasi-2D Nanoplatelets Enabled by Engineered Alloyed Heterostructures(Amer Chemical Soc, 2020) Altintas, Yemliha; Liu, Baiquan; Hernandez-Martinez, Pedro Ludwig; Gheshlaghi, Negar; Shabani, Farzan; Sharma, Manoj; Demir, Hilmi VolkanRecently, there has been tremendous interest in the synthesis and optoelectronic applications of quasi-two-dimensional colloidal nanoplatelets (NPLs). Thanks to the ultranarrow emission linewidth, high-extinction coefficient, and high photostability, NPLs offer an exciting opportunity for high-performance optoelectronics. However, until now, the applications of these NPLs are limited to available discrete emission ranges, limiting the full potential of these exotic materials as efficient light emitters. Here, we introduce a detailed systematic study on the synthesis of NPLs based on the alloying mechanisms in core/shell, core/alloyed shell, alloyed core/shell, and alloyed core/alloyed shell heterostructures. Through the engineering of the band gap supported by the theoretical calculations, we carefully designed and successfully synthesized the NPL emitters with continuously tunable emission. Unlike conventional NPLs showing discrete emission, here, we present highly efficient core/shell NPLs with fine spectral tunability from green to deep-red spectra. As an important demonstration of these efficient emitters, the first-time implementation of yellow NPL light-emitting diodes (LEDs) has been reported with record device performance, including the current efficiency surpassing 18.2 cd A(-1), power efficiency reaching 14.8 lm W-1, and record luminance exceeding 46 900 cd m(-2). This fine and wide-range color tunability in the visible range from stable and efficient core/shell NPLs is expected to be extremely important for the optoelectronic applications of the family of colloidal NPL emitters.Article Citation - WoS: 20Citation - Scopus: 25Medical Infrared Thermal Image Based Fatty Liver Classification Using Machine and Deep Learning(Taylor & Francis Ltd, 2024) Ozdil, Ahmet; Yilmaz, BulentNon-alcoholic fatty liver disease (NAFLD) causes accumulation of excess fat in the liver affecting people who drink little to no alcohol. Non-alcoholic steatohepatitis (NASH) is an aggressive form of fatty liver disease (inflammation in the liver), may progress to cirrhosis and liver failure. Liver function tests, ultrasound (US) and magnetic resonance imaging (MRI) are used to help diagnose and monitor liver disease or damage. In this study, the feasibility of medical infrared thermal imaging (MITI) in automatic detection of NAFLD was investigated, and 167 MITI images (44 positive) from 32 patients (7 positive) were evaluated using image processing and classification methods. Convolutional neural network (CNN) architectures and texture analysis methods were used in the feature selection phase. After feature selection and binary classification, the highest values from different setups for recall, f-score, specificity, accuracy, and area-under-curve (AUC) were 1.00, 1.00, 0.83, 1.0, 0.94, and 0.92, respectively. The highest values were achieved by CNN based methods on different datasets, however, texture analysis method performed lower. Here, it is shown that some of the CNN architectures have high potential on extracting features from thermal images. Finally, machine and deep learning approaches can be combined in detecting NAFLD using infrared thermal images.
