WoS İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/394
Browse
Browsing WoS İndeksli Yayınlar Koleksiyonu by Issue Date
Now showing 1 - 20 of 1279
- Results Per Page
- Sort Options
conferenceobject.listelement.badge Performance Evaluations of Active Subnetwork Search Methods in Protein-Protein Interaction Networks(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 01.01.2019) Gunter, Pinar; Bakir-Gungor, Burcu; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği BölümüProtein-protein interaction networks are mathematical representations of the physical contacts between proteins in the cell. A group of interconnected proteins in a protein-protein interaction network that contains most of the disease associated proteins and some interacting other proteins is called an active subnetwork. Active subnetwork search is important to understand mechanisms underlying diseases. Active subnetworks are used to discover disease related regulatory pathways, functional modules and to classify diseases. In the literature there arc many methods to search for active subnetworks. The purpose of this study is to compare the performance of different subnetwork identification methods. By using the Rheumatoid Arthritis dataset, the performances of greedy approach, genetic algorithm, simulated annealing algorithm, prize collecting steiner forest and game theory based subnetwork search methods are compared.Article THE RESTITUTION PROCESS IN CONSERVATION: DISCOVERING THE HISTORY OF SEHIT ALI PASA LIBRARY(MIDDLE EAST TECHNICAL UNIV, MIDDLE EAST TECHNICAL UNIV, FAC ARCHITECTURE, INONU BULVARI, ANKARA, 06531, TURKEY, 01.01.2019) Gumuslu Akgun, Seda Nehir; Sonmez Pulat, Ece; Bilgili, Bilal; 0000-0002-2727-3370; AGÜ, Mimarlık Fakültesi, Mimarlık BölümüConservation of cultural heritage sites is a multi-phased process including the architectural survey, restitution and restoration. Survey phase begins with the preliminary research and in situ analysis, which are crucial for comprehending the specifications, potentials and architectural characteristic of the site. After architectural survey, restitution is carried out to understand the situation in the first period of the site and how it has undergone a change in the historical process. During the restitution studies, alternatives are prepared for various periods by using the traces on the building and archival documents. At the last stage of the conservation process, which is restoration, the interventions for deterioration, repair proposals and spatial organization are determined according to the new/current use. This study focuses on restitution process of Sehit Ali Pasa Library, which is currently located in the garden of Vefa High School in Kalenderhane Neighbourhood, and consists of four main parts. The first part focuses on general information of the conservation process. In the second part, the historical background, location, spatial organization, construction technique and materials of the building are examined. The restitution or historical analysis process is the main theme of the third part, and all the findings and considerations are evaluated and interpreted in the final part. In this study, all characteristic features and the layers of the cultural heritage are discussed and documented to indicate the importance of architectural survey and restitution interpretation of the conservation process through the Sehit Ali Pasa Library as a multi-layered example. Unfortunately, the findings in the archives or the libraries are limited to propose certain restitution alternatives or precise historical description for this 18th century library, but it is crucial to underline the importance of detailed research process and methodology, architectural survey to prepare a scientific, reasonable, and consistent historical analyses of cultural heritage such as Sehit Ali Pasa Library as a multi-layered and complex building.Article Selective removal of cationic micro-pollutants using disulfide-linked network structures(ROYAL SOC CHEMISTRY, THOMAS GRAHAM HOUSE, SCIENCE PARK, MILTON RD, CAMBRIDGE CB4 0WF, CAMBS, ENGLAND, 207-05-15) Atas, Mehmet Sahin; Dursun, Sami; Akyildiz, Hasan; Citir, Murat; Yavuz, Cafer T.; Yavuz, Mustafa Selman; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü;Micropollutants are found in all water sources, even after thorough treatments that include membrane filtration. New ones emerge as complex molecules are continuously produced and discarded after used. Treatment methods and sorbent designs are mainly based on non-specific interactions and, therefore, have been elusive. Here, we developed swellable covalent organic polymers (COP) with great affinity towards micropollutants, such as textile industry dyes. Surprisingly, only cationic dyes in aqueous solution were selectively and completely removed. Studies of the COPs surfaces led to a gating capture, where negatively charged layer attracts cationic dyes and moves them inside the swollen gel through diffusive and hydrophobic interaction of the hydrocarbon fragments. Despite its larger molecular size, crystal violet has been taken the most, 13.4 mg g(-1), surpassing all competing sorbents. The maximum adsorption capacity increased from 12.4 to 14.6 mg and from 8.9 to 11.4 mg when the temperature of dye solution was increased from 20 to 70 degrees C. The results indicated that disulfide-linked COPs are attractive candidates for selectively eliminating cationic dyes from industrial wastewater due to exceptional swelling behaviour, low-cost and easy synthesis.Article Magnetic micro/nanoparticle flocculation-based signal amplification for biosensing(DOVE MEDICAL PRESS LTD, PO BOX 300-008, ALBANY, AUCKLAND 0752, NEW ZEALAND, 07.07.2016) Mzava, Omary; Tas, Zehra; Icoz, Kutay; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü;We report a time and cost efficient signal amplification method for biosensors employing magnetic particles. In this method, magnetic particles in an applied external magnetic field form magnetic dipoles, interact with each other, and accumulate along the magnetic field lines. This magnetic interaction does not need any biomolecular coating for binding and can be controlled with the strength of the applied magnetic field. The accumulation can be used to amplify the corresponding pixel area that is obtained from an image of a single magnetic particle. An application of the method to the Escherichia coli 0157: H7 bacteria samples is demonstrated in order to show the potential of the approach. A minimum of threefold to a maximum of 60-fold amplification is reached from a single bacteria cell under a magnetic field of 20 mT.Article Cation exchange mediated synthesis of bright Au@ZnTe core-shell nanocrystals(IOP PUBLISHING LTD, TEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND, 08.01.2021) Sadeghi, Sadra; Melikov, Rustamzhon; Sahin, Mehmet; Nizamoglu, Sedat; 0000-0002-8569-1626; 0000-0003-2214-7604; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği BölümüThe synthesis of heterostructured core-shell nanocrystals has attracted significant attention due to their wide range of applications in energy, medicine and environment. To further extend the possible nanostructures, non-epitaxial growth is introduced to form heterostructures with large lattice mismatches, which cannot be achieved by classical epitaxial growth techniques. Here, we report the synthetic procedure of Au@ZnTe core-shell nanostructures by cation exchange reaction for the first time. For that, bimetallic Au@Ag heterostructures were synthesized by using PDDA as stabilizer and shape-controller. Then, by addition of Te and Zn precursors in a step-wise reaction, the zinc and silver cation exchange was performed and Au@ZnTe nanocrystals were obtained. Structural and optical characterization confirmed the formation of the Au@ZnTe nanocrystals. The optimization of the synthesis led to the bright nanocrystals with a photoluminescence quantum yield up to 27%. The non-toxic, versatile synthetic route, and bright emission of the synthesized Au@ZnTe nanocrystals offer significant potential for future bio-imaging and optoelectronic applications.Article Effect of Granulated Blast Furnace Slag and fly ash addition on the strength properties of lightweight mortars containing waste PET aggregates(ELSEVIER SCI LTD, 2011) Akcaozoglu, Semiha; Atis, Cengiz Duran; 0000-0003-3459-329X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atis, Cengiz DuranIn this work, the effect of Granulated Blast Furnace Slag (GBFS) and fly ash (FA) addition on the strength properties of lightweight mortars containing waste Poly-ethylene Terephthalate (PET) bottle aggregates was investigated. Investigation was carried out on three groups of mortar specimens. One made with only Normal Portland cement (NPC) as binder, second made with NPC and GBFS together and, third made with NPC and FA together. The industrial wastes mentioned above were used as the replacement of cement on mass basis at the replacement ratio of 50%. The size of shredded PET granules used as aggregate for the preparation of mortar mixtures were between 0 and 4 mm. The waste lightweight PET aggregate (WPLA)–binder ratio (WPLA/b) was 0.60; the water–binder (w/b) ratios were determined as 0.45 and 0.50. The dry unit weight, compressive and flexural–tensile strengths, carbonation depths and drying shrinkage values were measured and presented. The results have shown that modifying GBFS had positive effects on the compressive strength and drying shrinkage values (after 90 days) of the WPLA mortars. However, FA substitution decreased compressive and flexural–tensile strengths and increased carbonation depths. Nevertheless a visible reduction occurred on the drying shrinkage values of FA modifying specimens more than cement specimens and GBFS modified specimens. The test results indicated that, GBFS has a potential of using as the replacement of cement on the WPLA mortars by taking into consideration the characteristics. But using FA as a binder at the replacement ratio of 50% did not improve the overall strength properties. Although it was thought that, using FA as binder at the replacement ratio of 50% for the aim of production WPLA concrete which has a specific strength, would provide advantages of economical and ecological aspects.Article The Effects of Different Types of Fly Ash on the Compressive Strength Properties of Briquettes(HINDAWI LTD, ADAM HOUSE, 3RD FLR, 1 FITZROY SQ, LONDON, W1T 5HF, ENGLAND, 2011) Sola, Ozlem Celik; Yayla, Murat; Sayin, Baris; Atis, Cengiz Duran; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü;The aim of this study is to evaluate the effect of the different types of fly ash on the compressive strength properties of sintered briquettes. Thermal gravimetric (TG) analysis was carried out. The chemical composition and physical properties of the materials used were determined. Particle size distribution and microstructure elemental analyses of the materials used were carried out by a particle size analyzer (Mastersizer) and a scanning electron microscope (SEM-EDS). Following the characterization of the materials, briquettes were prepared by sintering at different temperatures. Compressive strength test results of the briquette samples indicated that briquettes with a compressive strength value of 47.45 N/mm(2) can be produced. The results obtained exceed the Turkish standard (TS EN 771-1) requirements (9.8-23.54 N/mm(2)). SEM-EDS results showed that briquette samples made with Tuncbilek (T) fly ash had a higher percentage of the glassy phase than the other briquette samples. Due to this microstructure, it results in higher compressive strength value.Article Analysis of coronary angiography related psychophysiological responses(BMC, CAMPUS, 4 CRINAN ST, LONDON N1 9XW, ENGLAND, 2011) Okkesim, Sukru; Kara, Sadik; Kaya, Mehmet G.; Asyali, Musa H.; AGÜ, Mimarlık Fakültesi, Mimarlık Bölümü;Background: Coronary angiography is an important tool in diagnosis of cardiovascular diseases. However, it is the administration is relatively stressful and emotionally traumatic for the subjects. The aim of this study is to evaluate psychophysiological responses induced by the coronary angiography instead of subjective methods such as a questionnaire. We have also evaluated the influence of the tranquilizer on the psychophysiological responses. Methods: Electrocardiography (ECG), Blood Volume Pulse (BVP), and Galvanic Skin Response (GSR) of 34 patients who underwent coronary angiography operation were recorded. Recordings were done at three phases: "1 hour before," "during," and "1 hour after" the coronary angiography test. Total of 5 features obtained from the physiological signals were compared across these three phases. Sixteen of the patients were administered 5 mg of a tranquilizer (Diazepam) before the operation and remaining 18 were not. Results: Our results indicate that there is a strong correlation between features (LF/HF, Bk, DN1/DN2, skin conductance level and seg_mean) in terms of reflecting psychophysiological responses. However only DN1/DN2 feature has statistically significant differences between angiography phases (for diazepam: p = 0.0201, for non_diazepam p = 0.0224). We also note that there are statistically significant differences between the diazepam and non-diazepam groups for seg_mean features in "before", "during" and "after" phases (p = 0.0156, 0.0282, and 0.0443, respectively). Conclusions: The most intense sympathetic activity is observed in the "during" angiography phase for both of the groups. The obtained features can be used in some clinical studies where generation of the customized/individual diagnoses styles and quantitative evaluation of psychophysiological responses is necessary.Article Infrared multiple photon dissociation spectroscopy of protonated histidine and 4-phenyl imidazole(ELSEVIER, 2012) Hinton, Christopher S.; Oomens, Jos; Citir, Murat; Steill, Jeffrey D; Armentrout, P. B.; 0000-0002-6666-4980; AGÜ; Citir, MuratThe gas-phase structures of protonated histidine (His) and the side-chain model, protonated 4-phenyl imidazole (PhIm), are examined by infrared multiple photon dissociation (IRMPD) action spectroscopy utilizing light generated by the free electron laser FELIX. To identify the structures present in the experimental studies, the measured IRMPD spectra are compared to spectra calculated at a B3LYP/6–311+G(d,p) level of theory. Relative energies of various conformers are provided by single point energy calculations carried out at the B3LYP, B3P86, and MP2(full) levels using the 6–311+G(2d,2p) basis set. On the basis of these experiments and calculations, the IRMPD action spectrum for H+(His) is characterized by a mixture of [N,N] and [N,CO] conformers, with the former dominating. These conformers have the protonated nitrogen atom of imidazole adjacent to the side-chain (N) hydrogen bonding to the backbone amino nitrogen (N) and to the backbone carbonyl oxygen, respectively. Comparison of the present results to recent IRMPD studies of protonated histamine, the radical His•+ cation, H+(HisArg), H2 2+(HisArg), and M+(His), where M+ = Li+, Na+, K+, Rb+, and Cs+, allows evaluation of the vibrational motions associated with the observed bands.Article Alkali activation of mortars containing different replacement levels of ground granulated blast furnace slag(ELSEVIER SCI LTD, 2012) Bilim, Cahit; Atis, Cengiz Duran; 0000-0003-3459-329X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atis, Cengiz DuranThe aim of the present study is to investigate some properties of alkali-activated mortars containing slag at different replacement levels. Ground granulated blast furnace slag was used at 0%, 20%, 40%, 60%, 80% and 100% replacement by weight of cement, and liquid sodium silicate having three different Na dosages was chosen as the alkaline activator. In this research, carbonation resistance measurements and compressive and flexural strength tests were performed on the mortar specimens with size of 40 40 160 mm. The findings obtained from the tests showed that carbonation depth values of the mortars decreased with the increase of activator dosage. Additionally, compressive and flexural strength values increased with the increase in activator concentration and slag replacement level. Portland cement/slag mortars activated by liquid sodium silicate exhibited lower strength than the slag alone activated by the same activator.Article Thermochemistry of alkali metal cation interactions with histidine: Influence of the side chain(American Chemical Society, 2012) Armentrout, P. B.; Citir, Murat; Chen, Yu; Rodgers, M. T.; 0000-0002-7957-110X; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Citir, MuratThe interactions of alkali metal cations (M+ = Na+ , K+ , Rb+ , Cs+ ) with the amino acid histidine (His) are examined in detail. Experimentally, bond energies are determined using threshold collision-induced dissociation of the M+ (His) complexes with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy dependent cross sections provide 0 K bond energies of 2.31 ± 0.11, 1.70 ± 0.08, 1.42 ± 0.06, and 1.22 ± 0.06 eV for complexes of His with Na+ , K+ , Rb+ , and Cs+ , respectively. All bond dissociation energy (BDE) determinations include consideration of unimolecular decay rates, internal energy of reactant ions, and multiple ion-neutral collisions. These experimental results are compared to values obtained from quantum chemical calculations conducted previously at the MP2(full)/6-311+G(2d,2p), B3LYP/6-311+G(2d,2p), and B3P86/6-311+G(2d,2p) levels with geometries and zero point energies calculated at the B3LYP/6-311+G(d,p) level where Rb and Cs use the Hay−Wadt effective core potential and basis set augmented with additional polarization functions (HW*). Additional calculations using the def2-TZVPPD basis set with B3LYP geometries were conducted here at all three levels of theory. Either basis set yields similar results for Na+ (His) and K+ (His), which are in reasonable agreement with the experimental BDEs. For Rb+ (His) and Cs+ (His), the HW* basis set and ECP underestimate the experimental BDEs, whereas the def2-TZVPPD basis set yields results in good agreement. The effect of the imidazole side chain on the BDEs is examined by comparing the present results with previous thermochemistry for other amino acids. Both polarizability and the local dipole moment of the side chain are influential in the energetics.Article Investigation of Properties of Engineered Cementitious Composites Incorporating High Volumes of Fly Ash and Metakaolin(AMER CONCRETE INST, 2012) Ozbay, Erdogan; Karahan, Okan; Lachemi, Mohamed; Hossain, K. M. A.; Atis, Cengiz Duran; 0000-0003-3459-329X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atis, Cengiz DuranThis study was carried out to develop engineered cementitious composites (ECCs) incorporating binary blends of high volumes of fly ash (FA) and metakaolin (MK) for the purpose of achieving low drying shrinkage and high composite strength with adequate ductility and improved durability. ECC, an ultra-ductile cement-based composite reinforced with short random fibers, exhibits strain-hardening and multiple-cracking behavior in uniaxial tension and bending. Standard (M45) and high-volume FA ECC mixtures are typically produced by replacing portland cement (PC) with 55% and 70% of FA, respectively (FA-to-cement ratio of 1.2 and 2.2 by weight). In this study, the (FA + MK)/PC ratio was maintained at 1.2 and 2.2 and the FA/MK ratio was maintained at 4.5. Two replacement levels of MK with FA were adopted. The investigation used 10% and 12.5% MK by weight of total binder content, respectively. For the purposes of comparison, standard and high-volume FA ECCs were also studied. To determine the effect of binary blends of FA and MK on the properties of ECC, this study focused on the evaluation of free drying shrinkage, flexural and compressive strengths, porosity and water absorption (WA), sorptivity, and chloride-ion permeability. The experimental results showed that the drying shrinkage, porosity, absorption, sorptivity, and chloride-ion permeability properties were significantly reduced with the use of binary blends of FA and MK, while ECC's ultra-high ductility and strain-hardening properties were preserved at an adequate level.Article The photoionization cross section of a hydrogenic impurity in a multi-layered spherical quantum dot(AIP Publishing1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501, 2012) Sahin, Mehmet; Tek, Firdes; Erdinc, Ahmet; 0000-0002-9419-1711; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Şahin, MehmetIn this study, we have investigated the photoionization cross section of an on-center hydrogenic impurity in a multi-layered spherical quantum dot. The electronic energy levels and their wave functions have been determined fully numerically by shooting method. Also, we have calculated the binding energy of the impurity by using these energy values. The photoionization cross section has also been computed as a function of the layer thickness and normalized photon energies. We have discussed in detail the possible physical reasons behind the changes in the binding energies and photoionization cross section. It is observed that both the binding energies and the photoionization cross sections depend strongly on the layer thickness and photon energies. (C) 2012 American Institute of Physics.Article The effect of dilute nitrogen on nonlinear optical properties of the InGaAsN/GaAs single quantum wells(SPRINGER, 2012) Sahin, Mehmet; Koksal, Koray; 0000-0002-9419-1711; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Sahin, MehmetIn this study, we investigate the linear and third order nonlinear optical properties of InGaAsN/GaAs depending on nitrogen content and laser dressing parameter. As theoretical models, band anticrossing and model solid theory are used. In order to obtain the electronic properties of the quantum well, the finite difference method is used. The laser beam affects the electronic properties of the quantum well by changing the shape of the confinement potential. This modification of the potential is determined by laser dressing parameter. By using dilute amount of nitrogen, conduction band and the depth of quantum well can be controlled. The strain which is introduced due to the presence of nitrogen can be compensated by using indium atoms. The electronic and the linear and third order nonlinear optical properties of InGaAsN/GaAs quantum well structure are obtained.Article The linear optical properties of a multi-shell spherical quantum dot of a parabolic confinement for cases with and without a hydrogenic impurity(IOP Publishing Ltd, 2012) Sahin, Mehmet; Koksal, Koray; 0000-0002-9419-1711; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Sahin, MehmetThroughout this work, we aim to explore the linear optical properties of a semiconductor multi-shell spherical quantum dot with and without a hydrogenic donor impurity. The core and well layers are defined by the parabolic electronic potentials in the radial direction. The energy levels and corresponding wavefunctions of the structure are calculated by using the shooting technique in the framework of the effective-mass approximation. We investigate the intersublevel absorption coefficients of a single electron and the hydrogenic donor impurity comparatively as a function of the photon energy. In addition, we carry out the effect of a donor impurity and the layer thickness on the oscillator strengths and magnitude and position of absorption coefficient peaks. We illustrate the electron probability distribution and variation of the energy levels in cases with and without the impurity for different thicknesses of layers. This kind of structure gives an opportunity to tune and control the absorption coefficient of the system by changing three different thickness parameters. Also it provides a possibility to separate 0s and 1p electrons in different regions of the quantum dot.Article A detailed investigation of the electronic properties of a multi-layer spherical quantum dot with a parabolic confinement(ELSEVIER, 2012) Akgul, Selcuk; Koksal, Koray; Sahin, Mehmet; 0000-0002-9419-1711; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Sahin, MehmetIn this work, we aim a detailed investigation of the electronic properties of a spherical multi-layer quantum dot with and without a hydrogenic impurity. The structure is introduced in the form of core/ shell/well/shell layers. The core and well layers are defined by the parabolic electronic potentials. We carry out the effect of the core radius and layer thickness on the energy levels, their wave functions, binding energies of the impurity and the probability distributions. In order to determine the sublevel eigenvalues and eigenfunctions, the Schrodinger equation is solved full numerically by shooting ¨ method in the frame of the effective mass approximation. The results are analyzed in detail as a function of the layer thicknesses and their probable physical reasons are tried to be explained. It is found that the electronic properties and impurity binding energies are strongly depending on the layer thicknesses.Article A new per-field classification method using mixture discriminant analysis(TAYLOR & FRANCIS LTD, 2012) Calis, Nazif; Erol, Hamza; 0000-0001-8983-4797; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Erol, HamzaIn this study, a new per-field classification method is proposed for supervised classification of remotelysensed multispectral image data of an agricultural area using Gaussian mixture discriminant analysis(MDA). For the proposed per-field classification method, multivariate Gaussian mixture models constructedfor control and test fields can have fixed or different number of components and each component can havedifferent or common covariance matrix structure. The discrimination function and the decision rule of thismethod are established according to the average Bhattacharyya distance and the minimum values of theaverage Bhattacharyya distances, respectively. The proposed per-field classification method is analyzedfor different structures of a covariance matrix with fixed and different number of components. Also, weclassify the remotely sensed multispectral image data using the per-pixel classification method based onGaussian MDA.Article The role of spatal planning for sustainable tourism development: A theoretical model for Turkey(Institute for Tourism, 2012) Dede, Okan Murat; Ayten, Asim Mustafa; 0000-0002-4464-6204; AGÜ, Mimarlık Fakültesi, Mimarlık Bölümü; Ayten, Asim MustafaPlanning concept is an important concept for realizing the benefits of the tourism sector for localities, public and environment. Planning is a broad term covering several stages from national strategic decisions to unique design applications. Spatial planning is an important aspect of planning with a focus on physical planning in various sectors as well as tourism. The importance of planning has increased with the prominence of a second concept; sustainability. Since the 1970s, sustainability has continuously gained importance in all socio economic aspects of human beings. It is also important for the tourism sector as this sector has effects on the environment. This article tackles the role and importance of physical planning for the development of sustainable tourism concept. For this reason, a model is built for sustainable tourism development in Turkey as Turkish legislation system regarding planning and tourism should be improved in terms of sustainability. The aim of the article is to determine how to integrate spatial planning to sustainable tourism development and to decide the possible pathways within sustainable tourism development. The model considers all stages from large scale decisions to architectural design within a comprehensive manner. This model could be utilized to deal with all aspects of planning, such as policies, strategies, spatial decisions, building structuring, density, site planning and architecture.Article Fresh, Mechanical, Transport, and Durability Properties of Self-Consolidating Rubberized Concrete(AMER CONCRETE INST, 2012) Karahan, Okan; Ozbay, Erdogan; Hossain, Khandaker M. A; Lachemi, Mohamed; Atis, Cengiz Duran; 0000-0003-3459-329X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atis, Cengiz DuranThis paper presents the fresh, mechanical, transport, and durability performances of self-consolidating rubberized concretes (SCRCs). Fresh concrete properties were determined with slump flow, V-funnel, J-ring, and L-box tests. Mechanical, transport, and durability properties were determined by measuring compressive, flexural, and splitting tensile strengths; bond strength characteristics; water porosity; water absorption; water sorptivity; rapid chloride-ion permeability; and freezing-and-thawing and corrosion resistance. SCRC mixtures with a water-binder ratio (w/b) of 0.32; total binder content of 500 kg/m(3) (842 lb/yd(3)); and crumb rubber content of 0, 10, 20, and 30% by fine aggregate volume were produced and tested. Fresh properties testing revealed that the use of crumb rubber as a fine aggregate diminished the filling and passing ability of SCRC. A gradual reduction in mechanical properties was also observed with an increase in crumb rubber content; however, the rate of compressive strength reduction was more evident than that of tensile strength. Despite the fact that water porosity, water absorption, and chloride-ion permeability increased slightly with the use of crumb rubber, a remarkable decrease was observed in the initial and secondary water sorptivity of SCRC. No significant decrease was observed in the freezing-and-thawing and corrosion resistance of SCRC with 10% crumb rubber. Beyond that level, however, durability performance was significantly affected.Article The Effects of Pyrite Ash on the Compressive Strength Properties of Briquettes(KOREAN SOCIETY OF CIVIL ENGINEERS-KSCE, 2012) Sola, Ozlem Celik; Atis, Cengiz Duran; 0000-0003-3459-329X; AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü; Atis, Cengiz DuranThe aim of this study is to investigate the utilization of Pyrite Ash (PA) in the production of briquettes as a replacement of clay or soil. To achieve this, first, the characterization of the materials used (clayey soil and pyrite ash) was made using Fourier Transform Infrared Spectroscopy (FTIR/ATR). Particle size distribution and microstructure elemental analyses of these materials were also obtained using a particle size analyzer (Mastersizer) and a Scanning Electron Microscope (SEM). Following the characterization of the materials, the samples of briquettes made with or without addition of PA were prepared and sintered at 950 and 1000A degrees C in the furnace. The PA replacement ratios with clayey soil were 0, 5, 10, 20% in mass basis (w/w). Compressive strength and bulk densities of briquettes produced were measured and the results were presented. Compressive strength results of the briquette samples indicated that pyrite ash containing briquettes with 35 MPa compressive strength, which was higher than the requirements of Turkish Standard Specification (TS EN 771-1), can be obtained. It is also recorded that for each mixture, compressive strength values obtained at 1000A degrees C were higher than that of obtained at 950A degrees C. XRD analyze was performed on sintered briquette sample made with 10% PA which have the highest compressive strength value. The XRD results showed that peaks are Quartz (SiO2), Hematite (Fe2O3), Ortoclase (KAlSi3O8), Albite (Na(AlSi3O8)), Anorthite (CaAl2Si2O8) and Gehlenite (2CaO.Al2O3.SiO2).