Mühendislik Fakültesi
Permanent URI for this communityhttps://hdl.handle.net/20.500.12573/30
Browse
Browsing Mühendislik Fakültesi by WoS Q "Q3"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 43Citation - Scopus: 45Highly Efficient Cd-Free Alloyed Core/Shell Quantum Dots With Optimized Precursor Concentrations(Amer Chemical Soc, 2016) Altintas, Yemliha; Talpur, Mohammad Younis; Unlu, Miray; Mutlugun, Evren; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Mutlugun, Evren; Altintas, Yemliha; Talpur, Mohammad Younis; Unlu, Miray; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikThe chemical composition, the emission spectral bandwidth, and photoluminescence quantum yield of a semiconductor quantum dot (QD) play an important role in the assessment of the performance of the applications related to the quantum dots. Quantum dots based on environmentally friendly compositions with high optical performance have been in demand for high-end technological applications. In this work, we propose and demonstrate a detailed synthesis approach for environmentally friendly and highly efficient InPZnS alloy/ZnS shell quantum dots. Following a systematic study of the ratio and type of the precursors involved, we achieved alloyed core shell InPZnS/ZnS QDs with tunable emission across the visible spectrum, having a record quantum efficiency up to 78% along with a full width at half-maximum as narrow as 45 nm. The effect of the systematic shell growth has been further investigated using time-resolved photoluminescence characterizations along with the observation of the suppression of the nonradiative decay channels, with the photoluminescence lifetime prolonged from 20.3 to 50.4 ns. The development of highly efficient and environmentally friendly QDs will pave the way for robust, sustainable optoelectronic applications.Article Citation - WoS: 23Citation - Scopus: 23Pressure-Induced Amorphization of MOF-5: A First Principles Study(Wiley-VCH Verlag GmbH, 2018) Erkartal, Mustafa; Durandurdu, Murat; Erkartal, Mustafa; Durandurdu, Murat; 0000-0001-5636-3183; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiAmorphous metal-organic frameworks (MOFs) and the amorphization of crystalline MOFs under mechanical stimuli are attracting considerable interest in last few years. However, we still have limited knowledge on their atomic arrangement and the physical origin of crystalline-to-amorphous phase transitions under mechanical stimuli. In this study, ab initio simulations within a generalized gradient approximation are carried out to investigate the high-pressure behavior of MOF-5. Similar to the previous experimental findings, a pressure-induced amorphization is observed at 2 GPa through the simulations. The phase transformation is an irreversible first order transition and accompanied by around 68% volume collapse. Remarkably, the transition arises from local distortions and, contrary to previous suggestions, does not involve any bond breaking and formation. Additionally, a drastic band gap closure is perceived for the amorphous state. This study has gone some way towards enhancing our understanding of pressure-induced amorphization in MOFs.Article Citation - WoS: 6Citation - Scopus: 7Synergistic Effect of Organic Acid on the Dissolution of Mixed Nickel-Cobalt Hydroxide Precipitate in Sulphuric Acid Solution(Edp Sciences S A, 2019) Kursunoglu, Sait; Kursunoglu, Sait; 0000-0002-1680-5482; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; 01. Abdullah Gül UniversityThe synergistic effect of an organic acid on the dissolution of nickel and cobalt from a mixed nickel-cobalt hydroxide precipitate (MHP) in sulphuric acid solution was studied. The effects of sulphuric acid concentration, the type of organic acid, leaching time, leaching temperature and stirring speed on the dissolution of the metals were experimentally investigated. It was observed that there is no beneficial effect of leaching temperature and stirring speed on the dissolution of the metals from the used MHP product which contains 37.7% Ni, 2.1% Co and 5.6% Mn. It was found that citric acid was more effective than oxalic acid for the dissolution of nickel and manganese, whereas oxalic acid was more effective than citric acid for the dissolution of cobalt. The addition of oxalic acid into the leaching system, however, affected the dissolution of nickel negatively because nickel precipitate as nickel oxalate. Therefore, the use of citric acid as synergist for sulphuric acid leaching of MHP product is more promising. After 60 min of leaching, 90.9% Ni, 84.2% Co and 98.1% Mn were dissolved under the following conditions: 0.75 M sulphuric acid, 2 g citric acid, 1/10 solid-to-liquid ratio, 400 rpm stirring speed and 30 degrees C temperature. The experimental results demonstrate that the addition of citric acid as a synergist for sulphuric acid leaching of a MHP product provides beneficial effect for the dissolution of nickel, cobalt and manganese.