Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/207
Browse
Browsing Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu by WoS Q "Q2"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 6Citation - Scopus: 6Experimental Measurements of Some Thermophysical Properties of Solid CdSb Intermetallic in the Sn-Cd Ternary Alloy(Springer, 2016) Ozturk, Esra; Aksoz, Sezen; Altintas, Yemliha; Keslioglu, Kazum; Marasli, Necmettin; 0000-0002-1993-2655; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, Yemliha; 01. Abdullah Gül UniversityThe equilibrated grain boundary groove shapes of solid CdSb in equilibrium with Sn-Cd-Sb eutectic liquid were observed from a quenched sample by using a radial heat flow apparatus. The Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy of the solid CdSb intermetallic were determined from the observed grain boundary groove shapes. The thermal conductivity of the eutectic solid and the thermal conductivity ratio of eutectic liquid to the eutectic solid in the Sn-35.8 at.%Cd-6.71 at.%Sb eutectic alloy at its eutectic melting temperature were also measured with a radial heat flow apparatus and a Bridgman-type growth apparatus, respectively.Article Citation - WoS: 28Citation - Scopus: 27Flexible Electrodes Composed of Flower-Like MoS2 and MXene for Supercapacitor Applications(Pergamon-Elsevier Science Ltd, 2024) Hayat, Hilal Pecenek; Dokan, Fatma Kilic; Onses, M. Serdar; Yilmaz, Erkan; Duran, Ali; Sahmetlioglu, Ertugrul; 0000-0002-6260-2424; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Duran, Ali; 01. Abdullah Gül UniversityFlexible supercapacitors with high charge storage ability are needed for emerging applications in wearable electronics. Here, we introduce a novel flexible supercapacitor electrode by incorporating flower-like MoS2 into MXene via a hydrothermal technique. We mostly focused on the structural design for electrode configuration to enhance the charge storage mechanism. Three different electrodes composed of MoS2, MXene, and MoS2@MXene were fabricated via a versatile drop-casting and drying method. There are unique advantages of incorporating MoS2 with MXene such as the fast electron transfer, hydrophilicity of the interface, and structural stability. The MoS2@MXene // MXene flexible asymmetric supercapacitor device offered a high energy density of 1.21 W h /kg and a power density of 54.45 W /kg. Moreover, the asymmetric device exhibits nearly identical electrochemical behavior following 100 bending cycles at different angles. The high electrochemical activity of MoS2 and MXene and good interaction are ascribed to the superior electrochemical performance of the composite material. Furthermore, this research could guide the development of flexible, high-performance, and low-cost electrodes which will be useful in wearable electronics.Article Citation - WoS: 5Citation - Scopus: 5Formation of a Very High-Density Amorphous Phase of Carbon and Its Crystallization into a Simple Cubic Structure at High Pressure(Elsevier B.V., 2021) Durandurdu, M.; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiWe report a direct computational evidence of a two-step transformation sequence for tetrahedral amorphous carbon (ta-C) with increasing pressure. First, ta-C gradually transforms into a very high-density amorphous phase (VHDA) phase. Second, the VDHA phase converts into a simple cubic (SC) crystal. The structural defects formed during the high-pressure treatment play important roles for the formation and stabilization of the SC structure, rather than favorable the SC4 crystal. These phase transformations are reversible. © 2021 Elsevier B.V., All rights reserved.