Biyomühendislik Ana Bilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/417
Browse
Browsing Biyomühendislik Ana Bilim Dalı Tez Koleksiyonu by Subject "Bilgisayar Mühendisliği Bilimleri-Bilgisayar Ve Kontrol"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Master Thesis Gruplama Puanlama Modelleme (G-S-M) ve Geleneksel Özellik Seçim Yaklaşımını Kullanarak İnsan Gastrointestinal Kanser Mikrobiyotalarındaki Potansiyel Taksonomik Biyobelirteçlerin Belirlenmesi(2025) Çanakcımaksutoğlu, Beyza; Güngör, Burcu; Yousef, Malik; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiMikrobiyal bolluk değerlerinin analizi, kanser tahmini için bir potansiyel taşır. Bu çalışma, daha önce paralel olarak incelenmemiş bir alan olan hem doku hem de kan örnekleri kullanarak gastrointestinal (GI) kanser hastaları arasında paylaşılan mikrobiyal biyobelirteçleri belirlemeyi amaçlamaktadır. Bu çalışma, baş ve boyun, yemek borusu, mide, kolon ve kolorektal kanserlere odaklanarak kan ve doku örneklerini analiz etti. Dekontaminasyon adımları gerçekleştirilerek, insan olmayan genetik kodlar işlenerek, tür düzeyinde mikroorganizmalar ve bollukları belirlenerek, kanser hastalarından doku ve kan örnekleri toplayan 'Kanser Genom Atlası'ndan TCMA veri seti oluşturuldu. Geleneksel özellik seçimi algoritmaları (CMIM, mRMR, FCBF, IG, XGB ve SKB) yüksek boyutlu özellik alanını daralttı. Sınıflandırma performansı, 100-kat Monte Carlo çapraz doğrulaması olan bir Random Forest kullanılarak değerlendirildi. Ayrıca, gruplama yöntemi ile özellik boyutunu ve tahmin süresini azaltmak için oluşturulan MicrobiomeGSM modeli, hem kan hem de dokudan türetilen örnekler kullanılarak eğitildi ve MicrobiomeGSM modelinin genelleştirilebilirliği sergilendi. Geleneksel özellik seçimi yöntemleri ve biyolojik veri tabanlı MicrobiomeGSM modellerinin performansları karşılaştırıldı. Gelecekte, ortak biyobelirteç adayları doktorların metastaz olasılığını anlamasına yardımcı olabilir ve tedavi yollarına buna göre karar verilebilir.Doctoral Thesis Kanserin Moleküler Mekanizmalarını Aydınlatmak için Multi-Omik Verilerin Entegrasyonu: Meme Kanseri Alt Tip Tanımlaması Üzerine Bir Vaka Çalışması(2023) Yazıcı, Miray Ünlü; Güngör, Burcu; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik Fakültesi; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikGelişmiş genomik ve moleküler profilleme teknolojileri, kanser gelişimi ve ilerlemesinin arkasındaki düzenleyici mekanizmaların aydınlatılmasını hızlandırmış ve hedefe yönelik tedavilerin geliştirilmesini kolaylastırmıştır. Bu bağlamda, omik veri türleri arasındaki olası sistematik bağlantıların ve bunların tümör ilerlemesine katkılarının çözümlenmesi oldukça önemlidir. Bu tezde, meme kanserinde (BRCA) genomik ve epigenetik faktörlerin aydınlatılması, hastalık mekanizmalarının ortaya çıkarılması için çoklu omik veri analizine dayanan makine öğrenimi (ML) tabanlı bütünleştirici yaklaşımlar geliştirilmiştir. Bu bütünleştirici yaklaşımlar, gen ifadesi (mRNA), mikroRNA (miRNA) ve metilasyon verilerinden gelen bilgileri birleştirmektedir. Önerilen yöntemler, teşhis ve prognozu içeren hastalık mekanizmaları arasındaki boşluğu kapatmayı amaçlamaktadır. İlk çalışmamızda (3Mint), omik biyobelirteç gruplarının tespiti yoluyla gen seçimini iyileştirmek için biyolojik bilgiyi kullanarak grupların oluşturulmasını ve puanlanmasını gerçekleştirmeyi amaçlıyoruz. İkinci çalışmada (3Mont), yeni geliştirilen pro-gruplama ve önemli belirteçlerin puanlanması bileşenleri ile seçilen özellikler, makine öğrenmesi model geliştirme aşamasında kullanılmaktadır. Sonuç olarak bu tez çalışması, metilasyon verisini 2'li omik veriye (miRNA ve mRNA) dahil ederek daha az biyobelirteç ile BRCA moleküler alt tiplerinin benzer performans metrikleri ile sınıflandırılmasını amaçlamaktadır.Doctoral Thesis Kolon Polipleri için Kolonoskopi ve Histopatoloji Görüntülerinden Yapay Zekâ Destekli Prognostik Belirteç Tespiti(2023) Doğan, Refika Sultan; Yılmaz, Bülent; 01. Abdullah Gül University; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikDünya Sağlık Örgütü'nün 2023 yılı istatistiklerine göre kolorektal kanser dünya çapında en sık görülen üçüncü kanser türüdür ve tüm kanser vakalarının yaklaşık %10'unu oluşturmaktadır. Çoğu kolon kanseri, kolon mukozasında anormal hücre çoğalması sonucu oluşan poliplerle başlar. Kolon polipleri neoplastik ve neoplastik olmayan olarak iki türe ayrılır ve neoplastik polipler kanser potansiyele sahiptir. Kolonoskopi poliplerin tespitinde en yaygın kullanılan yöntemdir. Kolonoskopun ucundaki aletle poliplerin tespit edilip çıkarılması (polipektomi) mümkündür. Çıkarılan poliplerin neredeyse tamamının Hematoksilen ve Eozin (H&E) boyalı doku slaytları hazırlanıp patologlar tarafından mikroskop altında incelenir. Belirsizlik durumunda, kansere özgü önemli antijen (protein) ekspresyonlarını göstermek için immünohistokimyasal (İHK) analizler yapılır. Bu tezde dört ana çıktı elde edildi: İlk olarak, kolonoskopi videoları ve görüntüleri/kareleri kullanılarak polip tipi/alt tipi, evresi ve malignite potansiyelinin otomatik olarak belirlenmesi ve patoloji raporları ile İHK analiz sonuçlarının etiket olarak kullanılması araştırıldı. İkinci olarak kolonoskopi görüntülerinden, patoloji raporundan ve İHK analiz sonuçlarından elde edilen özellikler kullanılarak histopatoloji görüntülerinden kolon poliplerinin otomatik karakterizasyonu incelendi. Üçüncüsü, kanser potansiyeli gösterebilecek polip tipi/alt tipi, evresi ve olası prognostik özellikler (biyobelirteçler) istatistiksel yaklaşımlar kullanılarak analiz edildi. Son olarak Ki-67 (klon 30-9), CD34 (klon QBend/10), p53 (klon bp53-11), BRAF (klon V600E) , VEGF (klon SP125) ve PD-L1 (klon SP142) belirteçlerine ait 400'den fazla polipin kolonoskopi ve histopatoloji görüntülerini, polip tipini, lokasyonunu, evresini ve IHC analiz sonuçlarını içeren kapsamlı bir veri tabanı oluşturuldu ve bu veri tabanı oluşturuldu. açık kaynak kodlu bir depo olarak bilim camiasıyla paylaşılmaktadır.Master Thesis RNA Etkileşimlerinin İn Silico Analizi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Orhan, Mehmet Emin; Demirci, Müşerref Duygu Saçar; AGÜ, Fen Bilimleri Enstitüsü, Biyomühendislik Ana Bilim Dalı; 01. Abdullah Gül University; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikMany supervised machine learning models have been developed for the classification and identification of non-coding RNA (ncRNA) sequences. These models play a significant role in the diagnosis and treatment of various diseases. During such analyses, positive learning datasets typically consist of known ncRNA examples, some of which may even be confirmed with strong experimental evidence. However, there is no database of validated negative sequences for ncRNA classes or standardized methodologies for generating high quality negative samples. To overcome this challenge, a new method for generating negative data called the NeRNA (Negative RNA) method has been developed in this study. NeRNA generates negative sequences using known ncRNA sequences and their octal representations, similar with frame shift mutations found in biology but without base deletions or insertions. In this thesis, the NeRNA method was tested separately with four different ncRNA datasets, including microRNA (miRNA), transfer RNA (tRNA), long non-coding RNA (lncRNA), and circular RNA (circRNA). Additionally, a species-specific case study was conducted to demonstrate and compare the performance of the study's miRNA predictions. The results of 1000-fold cross-validation on machine learning algorithms such as Decision Trees, Naive Bayes, Random Forest classifiers, and deep learning algorithms like Multilayer Perceptrons, Convolutional Neural Networks, and Simple Feedforward Neural Networks showed that models developed using datasets generated by NeRNA exhibited significantly high prediction performance. NeRNA has been published as an easy-to-use, updatable, and modifiable KNIME workflow, along with example datasets and required extensions that can be downloaded and utilized. NeRNA is designed specifically as a powerful tool for RNA sequence data analysis.
