Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/418
Browse
Browsing Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu by Subject "Antibiotic Resistance"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
doctoralthesis.listelement.badge Antimicrobial peptide activity prediction using machine learning methods(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Söylemez, Ümmü Gülsüm; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim DalıAntimicrobial peptides (AMPs) are considered as promising alternatives to conventional antibiotics in order to overcome the growing problems of antibiotic resistance. Computational prediction approaches receive an increasing interest to identify and design the best candidate AMPs prior to the in vitro tests. In this thesis, using the multiple properties of the peptides we aimed to develop machine learning approaches that can predict the antimicrobial activities of the peptides. We have created two datasets for the peptides showing antimicrobial activity against Gram-negative and against Gram-positive bacteria separately. In our first study, ten different physico-chemical properties of the peptides were calculated, and used as features of the peptides. Following the data exploration and data preprocessing steps, a variety of classification models were build with 100-fold Monte Carlo Cross-Validation; and the performance of these models were evaluated. In the second study, we proposed a novel method called AMP-GSM. The method was tested for three datasets, and the prediction performance of AMP-GSM was comparatively evaluated with several feature selection methods and several classifiers. In the last study, using motif matching score with the models of activity against Gram-positive and Gram-negative bacteria, we created novel peptides and predicted the target selectivity of these peptides. The studies presented in this thesis advance the field of computational research by making it easier to predict the possible antimicrobial effects of peptides and to design AMPs in wet laboratory environments.