Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/418
Browse
Browsing Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu by Subject "Anlamsal Bölütleme"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Doctoral Thesis FDG-PET Görüntülerindeki Tümörlerin Makine ve Derin Öğrenme Tabanlı Analizi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Ayyıldız, Oğuzhan; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiAnalysis of a tumor is essential in treatment planning and evaluation of treatment response. Positron Emission Tomography (PET) is a vital imaging device for clinical oncology in understanding the metabolic structure of the tumor. In this thesis, three separate studies investigating the application of machine, deep learning and statistical approaches on FDG-PET images from patients with non-small cell lung cancer (NSCLC) and pancreatic cancer. The first study aimed at performing a survey on subtype classification of NSCLC by using different texture features, feature selection methods and classifiers. Images from 92 patients and several clinical and metabolic features for each case were used in this study along with histopathological validation for the tumor subtype labeling. Stacking classifier resulted in 76% accuracy. The aim of our second study was to adapt an atrous (dilated) convolution-based tumor segmentation approach (DeepLabV3) on FDG-PET slices with maximum standard uptake value (SUVmax). MobileNet-v2 pretrained on ImageNet served as the backbone to DeepLabV3. The classification layer was interchanged with the Tversky loss layer which helped improve model's performance while the dataset was imbalanced. Images from 141 patients were employed and augmentation was performed in each training phase. Dice similarity index was obtained as 0.76 without preprocessing and 0.85 with preprocessing. The last study focused on determining the features to be used in the prognosis of pancreatic adenocarcinoma on FDG-PET images from 72 patients. Well-known texture, metabolic and physical features were extracted from tumor region that was determined with the help of random walk segmentation algorithm. On these features time-dependent ROC curve analysis was performed for 2-year overall survival (OS) prediction, and, in the univariable analyses, tumor size, energy, entropy, and strength were found to be significant predictors of OS. Keywords: PET/CT, NSCLC, Machine learning, Deep learning, Radiomics, Semantic segmentation