Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/207
Browse
Browsing Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu by Subject "ab initio"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Article Amorphous boron carbonitride (BC4N) from ab initio simulations(ELSEVIER, 2024) Durandurdu, Murat; 0000-0001-5636-3183; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Durandurdu, MuratThis study utilizes ab initio molecular dynamics simulations to explore the structure and properties of amorphous boron carbonitride (a-BC4N). A 432-atom model, generated via a conventional melt-and-quench technique, exhibits a graphite-like structure with all elements possessing an average coordination number of about 3.0. C atoms dominate within individual layers, interspersed with distinct BN domains. This atomic arrangement deviates considerably from that proposed for crystalline BC4N structures. Despite this structural variation, the a-BC4N model is likely a narrow band gap semiconductor (0.15 eV), similar to its crystalline counterparts. In terms of mechanical properties, a-BC4N demonstrates similarities with various layered materials while exhibiting a notably larger bulk modulus.Article Amorphous silicon hexaboride at high pressure(TAYLOR & FRANCIS LTD, 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND, 2020) Durandurdu, Murat; 0000-0001-5636-3183; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği BölümüWe investigate the pressure-induced structural phase transformation of amorphous silicon hexaboride (a-SiB6) using a constant pressure first principles approach. a-SiB6 is found to undergo a gradual phase transformation to a high-density amorphous phase (HDA) in which the average coordination number of both B and Si atoms is about 6. The HDA phase consists of differently coordinated motifs ranging from 4 to 8. B-12 icosahedra are found to persist during compression of a-SiB6 and the structural modifications primarily occur around Si atoms and in the regions linking pentagonal pyramid-like configurations to each other. Upon pressure release, an amorphous structure, similar to the uncompressed one, is recovered, indicating a reversible amorphous-to-amorphous phase change in a-SiB6. When the electronic structure is considered, the HDA phase is perceived to have a wider forbidden band gap than the uncompressed one.Article Boron-rich amorphous boron oxides from ab initio simulations(ELSEVIER, 2023) Karacaoglan-Çetin , Aysegul Ozlem; Durandurdu, Murat; 0000-0001-5636-3183; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Karacaoglan-Çetin, Aysegul Ozlem; Durandurdu, MuratAmorphous boron oxide (BxO1-x, 0.5 ≤ x ≤ 95) configurations are simulated by means of an ab initio molecular dynamics technique and their microstructure and mechanical properties are revealed in details. With increasing B content, the average B-coordination noticeably increases from 3.18 to 5.62 whereas the O-coordination, surprisingly, remains almost null, about 2.0. The formation of complete B12 molecules is observed after 80% B concentrations. Chemical segregation is witnessed in most models and hence the resulting configurations show B: B2O3 phase separations. The mechanical properties (bulk, shear and Young moduli, Vickers hardness and microhardness) substantially increase with increasing B content. The amorphous materials (BxO1-x, x ≥ 80) are classified as hard materials. Within the limitations of DFT calculations and approaches used, we speculate that there is a ductile-to-brittle transition at around 70–75% B contents.Article A first principles study of amorphous and crystalline silicon tetraboride(ELSEVIER SCIENCE SAPO BOX 564, 1001 LAUSANNE, SWITZERLAND, 2021) Karacaoglu, Ayseguel Ozlem; Durandurdu, Murat; 0000-0001-5636-3183; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Karacaoglu, Ayseguel Ozlem; Durandurdu, MuratUsing first principles simulations, we generate an amorphous silicon tetraboride (SiB4) network from the melt and compare it structurally, mechanically and electrically with the crystal. Surprisingly the amorphous form is found to be energetically more favourable than the crystal. In both phases, the average coordination number of B atoms is comparable but that of Si atom is considerably different. Si atoms have a trend to structure in higher coordinated motifs in the amorphous configuration compared to the crystal. A close examination reveals that pentagonal pyramid-like arrangements are the leading units for B atoms in the noncrystalline state as in the crystal and some of which involve B12 and B11Si type molecules. Both phases exhibit a semiconducting character but have a significantly different band gap value (0.16 eV vs 0.88 eV). The Bulk modulus and Vicker's hardness are predicted to be similar to 151 GPa and 16.1-17.4 GPa for the amorphous network and to be similar to 161 GPa and 18.1-20.2 GPa for the crystal, correspondingly.Article High-pressure phase transitions of TiN: an ab initio constant pressure study(TAYLOR & FRANCIS LTD, 2015) Durandurdu, Murat; 0000-0001-5636-3183; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Durandurdu, MuratAn ab initio constant pressure molecular dynamics technique is carried out to explore the behaviour of rock salt-structured titanium nitride (TiN) under pressure. Two successive phase transformations are successfully observed in the dynamical simulations. The first one is an isostructural phase transition accompanied by an anomalous volume compression without any symmetry breaking. The second one is a reconstructive phase transformation into a CsCl-type structure. For the first time, the previously proposed two-phase transformations for TiN are confirmed through the simulations.Article MgCu metallic glass(TAYLOR & FRANCIS LTD, 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND, 2018) Durandurdu, Murat; 0000-0001-5636-3183; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği BölümüWe generate an amorphous MgCu model using the rapid solidification of the melt through a first-principles molecular dynamics approach within a generalised gradient approximation and reveal, for the first time, its structural features and mechanical properties in details. The liquid and glassy MgCu are found to acquire slightly distinct local structures. Yet in both forms of MgCu, most Cu atoms have a tendency to form the ideal and defective icosahedrons while Mg atoms are arranged in complex configurations. The mean coordination number of Cu and Mg at 300 K is 11.31 and 13.73, respectively. The short-range order of MgCu glass is projected to be different than the known crystalline MgCu and Mg2Cu phases. The mechanical properties of MgCu glass and the CsCl-type MgCu crystal are computed and compared. On the basis of the enthalpy analyses, a possible pressure-induced crystallisation of the MgCu glass into a CsCl-type structure is proposed to occur at around 11 GPa.