Scopus İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/395
Browse
Browsing Scopus İndeksli Yayınlar Koleksiyonu by Publisher "Amer Scientific Publishers"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 7Citation - Scopus: 4Artificial Neural Network Modeling and Simulation of In-Vitro Nanoparticle-Cell Interactions(Amer Scientific Publishers, 2014) Cenk, Neslihan; Budak, Gurer; Dayanik, Savas; Sabuncuoglu, IhsanIn this research a prediction model for the cellular uptake efficiency of nanoparticles (NPs), which is the rate that NPs adhere to a cell surface or enter a cell, is investigated via an artificial neural network (ANN) method. An appropriate mathematical model for the prediction of the cellular uptake rate of NPs will significantly reduce the number of time-consuming experiments to determine which of the thousands of possible variables have an impact on NP uptake rate. Moreover, this study constitutes a basis for targeted drug delivery and cell-level detection, treatment and diagnosis of existing pathologies through simulating NP-cell interactions. Accordingly, this study will accelerate nanomedicine research. Our research focuses on building a proper ANN model based on a multilayered feed-forward back-propagation algorithm that depends on NP type, size, surface charge, concentration and time for prediction of cellular uptake efficiency. The NP types for in-vitro NP-healthy cell interaction analysis are polymethyl methacrylate (PMMA), silica and polylactic acid (PLA), all of whose shapes are spheres. The proposed ANN model has been developed on MATLAB Programming Language by optimizing a number of hidden layers (HLs), node numbers and training functions. The datasets are obtained from in-vitro NP-cell interaction experiments conducted by Nanomedicine and Advanced Technology Research Center. The dispersion characteristics and cell interactions with different NPs in organisms are explored using an optimal ANN prediction model. Simulating the possible interactions of targeted NPs with cells via an ANN model will be faster and cheaper compared to the excessive experimentation currently necessary.Article Citation - WoS: 21Citation - Scopus: 21Polyethylenimine Modified and Non-Modified Polymeric Micelles Used for Nasal Administration of Carvedilol(Amer Scientific Publishers, 2015) Kahraman, Emine; Karagoz, Ayse; Dincer, Sevil; Ozsoy, YildizThis study evaluates the ability of polyethylenimine-modified and non-modified polymeric micelles to enhance permeation through the nasal mucosa for a highly hydrophobic model drug. Carvedilol was loaded into polyethylenimine-modified and non-modified micelles by direct dissolution. Formulations were characterised by critical micelle concentration, micelle particle size and distribution, zeta potential, morphological structure and entrapment efficiency. The drug entrapment efficiency was determined to be as high as 77.14%, while micelle particle sizes and zeta potentials were within the range of 140.0-279.9 nm and (-40.6)-(+25.9) mV, respectively. In vitro studies showed 100% release of carvedilol from micelles in 120 hours. Ex vivo permeation studies showed that the drug in polyethylenimine non-modified micelles passed more efficiently than the drug in polyethylenimine modified micelles. These results demonstrated that polyethylenimine modified micelles did not significantly affect the permeation of the drug when compared to polyethylenimine non-modified micelles. On the contrary, the drug in poly(L-lactide)-block-methoxy poly(ethylene glycol) 5000 micelles, the polyethylenimine non-modified micelles, showed the highest permeation rate through bovine nasal mucosa. In conclusion, poly(L-lactide)-block-methoxy poly(ethylene glycol) 5000 polymeric micelles maybe useful as novel drug carriers that increase the permeation through the nasal mucosa.
