Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/418
Browse
Browsing Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu by Publisher "Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü"
Now showing 1 - 20 of 56
- Results Per Page
- Sort Options
Doctoral Thesis Hastalık Tahmini ve Biyobelirteçlerin Tespiti için Makine Öğrenim Modellerinin Tasarımı ve Geliştirilmesi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Temiz, Mustafa; Güngör, Burcu; Yousef, MalikIn medical science, the prediction of diseases and the identification of biomarkers play an important role in the diagnosis and treatment of various health conditions. The recent proliferation of data mining techniques has accelerated the development of disease prediction systems. In particular, machine learning methods are an effective way to analyze medical data and identify patterns to predict the likelihood of the disease development. Machine learning methods also help to identify biomarkers. Recently, the increasing incidence and mortality rates of inflammatory bowel disease, colorectal cancer and type 2 diabetes have drawn researchers' attention to these research areas. The aim of this thesis is to reduce the number of features and improve the prediction performance of machine learning based on complex biological datasets with a large number of disease-related features, as well as to identify potential biomarkers. In this thesis, three different studies are presented. The first study predicts eleven different cancer subgroups using miRNA data and biological domain knowledge and identifies potential biomarkers for these diseases. The second study predicts three different diseases using metagenomic data and biological domain knowledge and identifies potential biomarkers. The third study uses metagenomic data related to colorectal cancer to conduct global and population-based comprehensive experiments with traditional feature selection methods to identify potential biomarkers. This thesis presents a promising avenue for early disease detection, facilitating expedited treatment protocols, improving human survival rates, and potentially alleviating economic burdens within these critical research domains.Doctoral Thesis A reliable and secure communication design for underwater sensor networks concerning energy efficiency(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) UYAN, Osman GökhanUnderwater Acoustic Sensor Networks (UASNs) recently attract scientists because of its wide range of applications and emerging technology. A design challenge in UASN's is the limited network lifetime and poor reliability caused by limited battery supply of sensors and harsh channel conditions in underwater environment. Moreover, sensors might transmit sensitive data that must be disguised against eavesdropping attacks. To maintain a reliability level, packet-duplication and multi-path routing method are suggested, which renders eavesdropping attacks easier. For data security, cryptographic encryption is the most acclaimed method. However, encryption needs extra computations, which consume extra energy and cause a decrease in the network lifetime. As a countermeasure along with encryption against silent listening, fragmenting data and transmitting in pieces over different paths has been proposed. To address these challenges, an optimization framework has been developed to analyze the effects of multi-path routing, packet duplication, encryption, and data fragmentation on network lifetime. However, the solution time of the proposed optimization model is quite high, and sometimes it cannot come up with feasible solutions. To this end, in this study, different regression and neural network methods have been proposed to predict the energy consumptions of underwater nodes as supplementary methods to optimization models. Performance evaluations show that the proposed methods yield remarkably accurate predictions and can be used for energy consumption prediction in UASNs.Doctoral Thesis FDG-PET Görüntülerindeki Tümörlerin Makine ve Derin Öğrenme Tabanlı Analizi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Ayyıldız, Oğuzhan; Yılmaz, BülentAnalysis of a tumor is essential in treatment planning and evaluation of treatment response. Positron Emission Tomography (PET) is a vital imaging device for clinical oncology in understanding the metabolic structure of the tumor. In this thesis, three separate studies investigating the application of machine, deep learning and statistical approaches on FDG-PET images from patients with non-small cell lung cancer (NSCLC) and pancreatic cancer. The first study aimed at performing a survey on subtype classification of NSCLC by using different texture features, feature selection methods and classifiers. Images from 92 patients and several clinical and metabolic features for each case were used in this study along with histopathological validation for the tumor subtype labeling. Stacking classifier resulted in 76% accuracy. The aim of our second study was to adapt an atrous (dilated) convolution-based tumor segmentation approach (DeepLabV3) on FDG-PET slices with maximum standard uptake value (SUVmax). MobileNet-v2 pretrained on ImageNet served as the backbone to DeepLabV3. The classification layer was interchanged with the Tversky loss layer which helped improve model's performance while the dataset was imbalanced. Images from 141 patients were employed and augmentation was performed in each training phase. Dice similarity index was obtained as 0.76 without preprocessing and 0.85 with preprocessing. The last study focused on determining the features to be used in the prognosis of pancreatic adenocarcinoma on FDG-PET images from 72 patients. Well-known texture, metabolic and physical features were extracted from tumor region that was determined with the help of random walk segmentation algorithm. On these features time-dependent ROC curve analysis was performed for 2-year overall survival (OS) prediction, and, in the univariable analyses, tumor size, energy, entropy, and strength were found to be significant predictors of OS. Keywords: PET/CT, NSCLC, Machine learning, Deep learning, Radiomics, Semantic segmentationDoctoral Thesis Anormallik Tespiti için Veri Madenciliği(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Kaçmaz, Rukiye Nur; Yılmaz, BülentGastroentereloji uzmanları için kolon anormalliklerinin tespit edilmesi en zor görevlerden birisidir. Kolonoskopi herhangi bir anormalliği izlemek için kolondan video veya görüntüler kaydetmenin en yaygın yöntemidir. Bununla birlikte işlem sırasında elde edilen görüntü veya videolar, kolonoskopi probunun ya da kapsülün hızlı hareketinden kaynaklanan hareket gürültüsü, kapsülde ve probda ışık kaynağından kaynaklanan yansıma gürültüsü (YG), yetersiz veya aşırı aydınlatmadan kaynaklanan uygun olmayan kontrast gürültüsü, mide öz suyu, baloncuklar veya kalıntılar içermektedir. Bu tarz gürültüler içeren görüntülere bilgi taşımayan çerçeveler adı verilmektedir. Hastalık tespiti işlemi ise bilgi içeren olarak adlandırılan temiz görüntüler ile yürütülmektedir. İlk çalışmada tekstür tabanlı otomatik polip tespitinde YG'nin etkisini ve YG'yi ortadan kaldırmak için kullanılan görüntü enterpolasyonunun kullanımı araştırıldı. Bu amaçla, çeşitli boyutlarda sonradan YG eklenen ve interpolasyon uygulanan görüntülerden ve YG içermeyen görüntülerden çeşitli tekstür özellikleri elde edildi. Polipleri kolon arka planından ayırt etmek için, uygulanan en yakın komşular, bilineer ve bikübik interpolasyon yöntemlerinin, tekstür özellikleri ve sınıflandırma performansı açısından herhangi bir farklılığa neden olup olmadığı test edildi. İkinci çalışmada temel amaç, bilgi taşımayan çerçeveleri tespit etmede geleneksel makine öğrenmesi ve transfer öğrenme yaklaşımlarının performanslarının karşılaştırılmasıydı. Makine öğrenmesi bölümünde, gri seviye eş oluşum matrisi, gri seviye koşu uzunluğu matrisi, komşuluk gri ton farkı matrisi, odak ölçüm operatörleri ve basıklık, standart sapma ve çarpıklık olarak üç adet birinci derece istatistik kullanıldı. Sınıflandırma aşamasında rastgele orman, destek vektör makineleri ve karar ağacı yaklaşımları kullanılmıştır. Transfer öğrenme bölümünde derin sinir ağları olarak AlexNet, SqueezeNet, GoogleNet, ShuffleNet, ResNet-18, ResNet-50, NasNetMobile ve MobileNet tercih edildi. Son çalışma, bilgi taşıyan çerçevelerde Crohn's, ülseratif kolit, kanser ve polip gibi kolon anormalliklerinin saptanmasını içermiştir. Bu çalışmanın amacı, öncelikle sağlıklı çerçeveleri hastalıklılardan ayırmak ve hem geleneksel makine öğrenmesi hem de transfer öğrenme yaklaşımlarını kullanarak hastalık türlerini belirlemekti. İkinci çalışmada kullanılanlarla aynı tekstür özellikleri, sınıflandırma yaklaşımları ve transfer öğrenme yöntemleri kullanılmıştır.Master Thesis Farklı Modülasyon Teknikleri ile Su Altı İletişimde Performans Analizi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2017) Bahçebaşı, Akif; Güngör, Vehbi ÇağrıSualtı Kablosuz Algılayıcı Ağlarının özellikle veri toplama, sınır güvenliği, kirlilik izleme, sahil araştırma ve taktiksel takip gibi bir çok oşinografi uygulaması son yıllarda pek çok araştırmacının ilgisini çekmeye başlamıştır. Pek çok su altı uygulamasında, su altı sensor düğümlerinin yanında, insansız su altı araçları da su altı kaynaklarının keşfi ve veri toplama gibi işbirliği gerektiren görevlerde yaygın olarak kullanılmaktadır. Su altı ağlarda kurulan bağlantı akustik iletişime dayanmasına rağmen, akustik kanal özellikleri çok ani değişiklikler gösterir ki, bu nedenle kurulan bağlantı kalitesinde, çevresel faktörler ve düğümlerin konumları önemli rol oynar. Bu sebeple su altı ağlarda güvenilir bir iletişimin kurulması oldukça zordur. Bütün bunlardan başka, sinyal kayıpları ve yeniden iletimler enerji kaynaklarının gereksiz sarfiyatına dolaysıyla ağ ömrünün kısalmasına neden olur. Bu tez çalışmasında su altı akustik ağlarda en çok bilinen modülasyon teknikleri kullanılarak farklı derinlik, mesafe ve Bit hata oranına sahip su altı ortamları analiz edilmiştir. Sonuç olarak veri iletimi için gerekli minimum enerji miktarı bulunmuş ve modülasyon teknikleri uygun şekilde kıyaslanmıştır. Simülasyon çalışmalarımızda kanıtlandığı üzere 32-PSK ve 16-QAM teknikleri minimum (optimum) enerji tüketim oranlarına ulaşmıştır. Bundan dolayı ağ tasarımcıları 32-PSK ve 16-QAM modülasyon tekniklerini kullanarak su altı ağların ömrünü artırabilirler.Doctoral Thesis Blokzincir Tabanlı Eşten-Eşe Enerji Ticareti Uygulamaları(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Seven, Serkan; Alkan, Gülay YalçınThis thesis explores the potential of innovative peer-to-peer (P2P) energy trading schemes for virtual power plants (VPPs) using blockchain technologies, smart contracts, and decentralized finance (DeFi) instruments. Traditional centralized approaches have limitations in terms of transparency and security, which can hinder the successful implementation and operation of VPPs and P2P energy trading systems. The dissertation begins by reviewing the current state of energy sources within the global energy landscape. Understanding the existing landscape provides valuable insights into the potential benefits and challenges of implementing P2P energy trading within VPPs. The focus of the dissertation is to develop and analyze innovative P2P energy trading schemes for VPPs that integrate blockchain technologies and facilities to enhance transparency, security, and automation of energy transactions. Furthermore, DeFi instruments, specifically decentralized exchange (DEX), are used as a novel approach instead of auction methods to determine P2P energy buying and selling prices. Along with blockchain technologies, optimization is used to maximize the economic benefits of peers. The sequential decision problem of the trading schemes is solved with mixed integer linear programming (MILP). In addition, machine/deep learning models are utilized to overcome the drawbacks of conventional mathematical programming like MILP. These models can accelerate the decision-making processes by learning from the optimization results obtained. Overall, frameworks for the successful integration of P2P energy trading within and among VPPs are developed to validate the effectiveness and feasibility of the proposed P2P energy trading schemes through case studies and simulations using realistic data sets and blockchain platforms.Doctoral Thesis Derin Öğrenme Yaklaşımlarıyla Küçük Hücreli Dışı Akciğer Kanserinde Tümör Karakterizasyonu(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2021) Bıçakcı, Mustafa; Yılmaz, BülentKüçük Hücreli Dışı Akciğer Kanseri (KHDAK) akciğer kanserlerinin büyük çoğunluğunu oluşturur ve adenokarsinom (ADC) ve skuamöz hücreli karsinom (SqCC) olmak üzere iki önemli alt tipi vardır. Genel olarak, bu iki alt tip mikroskobik olarak belirlenen morfolojik kriterler dikkate alınarak birbirinden ayrılır. Ancak, kötü morfoloji bunu oldukça zorlaştırır. Alt tipe özel tedavi yöntemleri için bu tür çalışmalar önemlidir. Bu tezde, pozitron emisyon tomografi (PET) görüntüleri kullanılarak KHDAK'nin alt tiplerinin sınıflandırılması üzerinde derin öğrenme (DÖ) yöntemleri incelenmiştir. İlk çalışmada, DÖ yöntemlerinin temelini oluşturan yapay sinir ağları (YSA) kullanılarak %73 doğru sınıflandırma başarısı elde edilmiştir. İkinci çalışmada, PET görüntülerinden alınan bölütlenmiş tümör kesitleri kullanılarak birkaç DÖ modeli incelenmiştir. Sonuçta, %95 F skoru ile VGG16 ve VGG19 en başarılı modeller olmuştur. Bu çalışmanın sonunda kesit bazlı çalışmalar bırakılarak hasta bazlı çalışmalara geçilmiştir. Üçüncü çalışmada, hasta bazlı dilimlerin birleştirilmesiyle oluşturulan üç boyutlu (3B) verilerin kullanımı yeterli başarıyı sağlamamıştır. Dördüncü çalışmada, PET görüntülerinin doğrudan kullanıldığı, tümör kısımlarının kırpılarak kullanıldığı ve bölütlenmiş tümör parçalarının kullanıldığı üç farklı deney yapılmıştır. Bu çalışma, peritümoral alanların sınıflandırmada olumlu etkisini ortaya koymuş ve VGG19 %74 F skoru değerine ulaşmıştır. Beşinci çalışmada, transfer öğrenme ve hassas ayar çalışmaları başarısızdı. CNN ve ResNet tabanlı sığ ağları içeren son çalışma %71 F skoru ile umut verici olmuştur.Doctoral Thesis Uzaktan Kontrollü İkincil Emisyon İyonizasyon Kalorimetri Modülleri ile Yüksek Enerjili Kozmik ve Gama Radyasyon Ölçümü(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Paran, Nejdet; Tekgün, Burak; Tıraş, EmrahThe demand for precise, robust, and reliable radiation-resistant particle detectors and ionization calorimeters intensifies, due to the escalating luminosity and unprecedented radiation conditions at particle colliders and accelerators. Secondary Emission (SE) Ionization Calorimetry is a novel technology designed to measure the energy of electromagnetic and hadronic particles, particularly in extreme radiation conditions. In this study, we have tested and investigated the development and radiation test of the novel SE modules. The modules were developed by modifying the conventional Hamamatsu single anode R7761 Photomultiplier Tubes. Three different voltage conditions for the same module were developed and the new modules were tested by using cosmic, gamma (Co-60) and neutron (AmBe) radiation sources. The results show that all three modes have good sensitivity to electromagnetic showers, and they are suitable for harsh radiation environments. This study also shows that SE module is a promising technology shedding light on future radiation-resistant nuclear and high-energy detectors. Here, we discuss the technical design, test characteristics and cosmic and particle interaction results of the newly developed SE modules. Since such detector systems are either in a high radiation area or in a closed room/box, remote mode changes allow us to continue the experimental process without interruption. By adding these signals to the interface where the modes are controlled, we can instantaneously observe the modes' effects.Doctoral Thesis MRG Taramalarında Alzheimer Hastalığının Zaman Dağılımlı Sınıflandırılması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Dündar, Mehmet Sait; Yılmaz, BülentThis thesis presents a comprehensive framework for studying Alzheimer's Disease (AD) progression by focusing on the classification of AD, Mild Cognitive Impairment (MCI), and Cognitively Normal (CN) individuals using advanced machine learning models that analyze changes in brain volumetrics over time through MRI scans. In the first phase of the research, MR images from the Alzheimer's Disease Neuroimaging Initiative database were utilized, which included sequences of 3-4 scans taken annually from 22 CN, 18 AD, and 20 MCI subjects. Key volumetric parameters such as cortical thickness and intracranial volumes were extracted using the CAT12 toolbox in SPM software. A novel classification method based on the rate of volumetric changes over time was employed, effectively capturing the progressive nature of neurological changes. This approach achieved accuracies of 82.5% in distinguishing AD from CN, 71% in differentiating MCI from AD, and 69% in separating MCI from CN, alongside a 55% accuracy in a three-way classification using random forest and support vector machines. Building on these initial insights, the second phase of the study significantly advanced the methodology by integrating a pre-trained 3D ResNet 101 CNN algorithm for initial spatial categorization of MRI scans, followed by the use of Long Short-Term Memory (LSTM) networks. These LSTMs processed the same sequences of 3-4 annual scans for each patient, enhancing the model's ability to analyze and interpret the temporal progression of volumetric changes. This sophisticated approach led to marked improvements in classification accuracy: 96.7% in differentiating AD from CN, 87.5% in distinguishing AD from MCI, and 86.4% in separating MCI from CN. The study effectively demonstrates a significant enhancement in capturing the temporal dynamics of AD progression.Master Thesis K-mer Sekans Gösterimine Dayalı MicroRNA-Hastalık İlişkilerinin ve MicroRNA-Tür İlişkilerinin Sınıflandırılması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Erbaşı, Yalçın Han; Güngör, BurcuThe dysregulated gene expression brings about a variety of diseases, and dysregulation of microRNA (miRNA) has a wide impact on disease development and cellular physiology. Thus, miRNAs play important roles in a variety of fundamental and significant biological processes related to human diseases. There are a lot of research about changes in the function of miRNAs have been published in many human diseases. Computational methods serve as a complementary process to traditional wet-lab experiments, which require many resources and time in terms of detecting potential miRNA-Disease associations. Furthermore, there is a need to present a novel approach that allows assignment of an unknown miRNA to its most likely species. An easy way to filter new data would be to ensure that the new miRNA is classified below the maximum distance to the species known to originate from. In this thesis, a computational model has been proposed for identifying miRNA-disease and miRNA-Species associations by depicting the miRNAs with their k-mer sequence representation and by utilizing machine learning methodologies. The difference of our approach is which we reveal disease and species associated the sequences of miRNA store information. This put a question about the miRNA's chemical compounds and their associations with different types of species and diseases. With this study, the new disease-disease and species-Species associations disclosed can be calculated for many different species and diseases, these approaches can develop to species and disease classification. Lastly, our study may open a door to redefine species and diseases classifications which have been used nowadays, also it may provide the improvement of treatment strategies and early diagnosisMaster Thesis Ultra Geniş Bantlı Vivaldi Antenlerin Tasarımı ve Performans İyileştirmesi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Güzelkara, İzzet; Kılıç, Veli TayfunUltra-wideband technology has become a trending topic in the academic community since 2002 due to the release of the spectral mask by Federal Communications Commission, allowing the use of 3.6-10.1 GHz band for commercial and industrial applications. Being one of the fundamental components of ultra-wideband systems, ultra-wideband antennas are an important research area. In this research, Vivaldi antennas for ultra-wideband communications and several performance enhancement techniques for the antennas were studied. Antennas were designed and simulated using a commercially available three-dimensional electromagnetic simulation tool. First, a simple design of a Vivaldi antenna with a rectangular microstrip feed was obtained. The initial design has a -10 dB impedance bandwidth between 3.1 and 13.6 GHz and an average realized gain of 2.75 dBi. A method based on the alignment of the microstrip feed was described for adjusting the bandwidth of the initial design. Then, using several performance enhancement techniques such as implementation of corrugations and a parasitic patch, the antenna design was improved. Thanks to the applied methods, an antenna design with -10 dB impedance bandwidth extending from 1.33 to 10.1 GHz and an average realized gain of 6 dBi was achieved. Findings of this thesis study show that Vivaldi antennas having specific structures designed with the applied techniques are a promising solution for ultra-wideband communication systems, especially where antennas with directive radiation patterns are desired.Master Thesis Protein İkincil Yapısının Tahmini için Sınıflandırma Yöntemlerinin Optimizasyonu(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2017) Uzut, Ömmu Gülsüm; Aydın, ZaferProtein ikincil yapı tahmini, proteinin yapısını ve fonksiyonunu anlamak için önemli ve yaygın olarak kullanılan bir aşamadır. İkincil yapı tahmin bilgisi üç boyutlu yapı tahmini için de kullanıldığından protein dizisiyle üç boyutlu yapısı arasında bir köprü olarak görülebilir. Şimdiye kadar, tahmin doğruluk oranını artırmak için birçok yöntem geliştirilmiştir. Yöntemlerin performansını etkileyecek birden fazla durum vardır. Bunlar arasında model hiper-parametrelerinin doğru seçilmesi önem taşımaktadır. Model eğitme sürecinde direkt olarak öğrenilemeyen bu parametrelerin optimize edilmesiyle modellerin hassas olarak ayarlanması mümkündür. Bu sayede aşırı uyum ve eksik uyum gibi davranışlardan kaçınılması amaçlanır. Bu tezde, destek vektör makinesi, derin katlamalı yapay sinir alanları ve rastgele orman yöntemleri bir hibrit sınıflandırıcının ikinci aşamasında kullanılmak üzere optimize edilmiş ve ikincil yapı tahmini problemine uygulanmıştır. Buna ek olarak eğitilen sınıflandırıcılardan elde edilen tahminler bir topluluk yöntemi ile farklı kombinasyonlarda birleştirilmiş ve başarı oranları en zor tahmin koşulu için incelenmiştir. Geliştirilen yöntemlerin doğruluk oranları literatürdeki en iyi yöntemler ile aynı seviyededir ve farklı modellerin birleştirilmesinin tahmin başarısını iyileştirme potansiyeli bulunduğu gösterilmiştir.Master Thesis Esnek Kağıt Tabanlı Kapasitif Sensör Kullanarak Solunum İzleme(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Solak, İrfan; İçöz, Kutay; Hah, DooyoungRespiration is an action known to be essential and crucial for life. Unfortunately, in some cases such as illnesses and accidents various respiratory problems can be experienced. It might be difficult to maintain normal respiration for the people who have respiratory diseases. It is known that respiration monitoring of people who have respiratory problems, albeit for different reasons, is important in terms of their treatment and maintaining their life quality. Current respiration monitoring systems are expensive and bulky. Many of these systems are only available at hospitals or in laboratories. Low-cost, easy to use and portable respiratory monitoring devices are needed. Having these motivations, we aimed to monitor respiration by designing and producing a paper-based sensor that is easy to manufacture, low-cost, and highly responsive. The sensor, which is the subject of this thesis project, has potential to be used for different purposes such as measuring the humidity in the environment. In this project, we focused on designing a system for people who have respiratory problems by providing respiration monitoring data. In addition, according to the data obtained, we are able to analyze the health status of the users. Therefore, this sensor can be used both for the detection of respiration diseases and monitor the status of the patients. In this way, respiration related unhealthy situation can be detected and treated immediately.Master Thesis Bilgisayar Algoritmalarının GPU ile Hızlandırılması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Yalçın, Salih; Alkan, Gülay YalçınTravelling Salesman Problem (TSP) is one of the significant problems in computer science which tries to find the shortest path for a salesman who needs to visit a set of cities and it involves in many computing problems such as networks, genome analysis, logistic etc. Using parallel executing paradigms, especially GPUs, is appealing in order to reduce the problem-solving time of TSP. One of the main issues in GPUs is to have limited GPU memory which would not be enough for the entire data. Therefore, transferring data from host device would reduce the performance in execution time. In this study, we present a methodology for compressing data to represent cities in the TSP so that we include more cities in GPU memory. We implement our methodology in Iterated Local Search (ILS) algorithm with 2-opt and show that our implementation presents 29% performance improvement compared to the state-of-the-art GPU implementation.Doctoral Thesis Medikal Termal Görüntülerin Otomatik Olarak İşlenmesi ve Sınıflandırılması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Özdil, Ahmet; Yılmaz, BülentThe aim of this dissertation is to develop computer aided methods for processing and evaluating medical infrared thermal images. Throughout this study three problems were evaluated. The first problem was to automatically classify the body part and pose in the thermal images. In this study there were four classes; upper-lower body parts with back-front views. The first step included the segmentation of the background with Otsu's thresholding method applying histogram equalization. Next, DarkNet-19 architecture was used to extract features from images and these features were reduced using PCA and t-SNE methods. Finally reduced feature sets were used for classification. The second problem was to automatically classify liver steatosis from using thermal images. In this study, the classification problem was tested on an anatomical region of interest from abdominal images corresponding to the liver. Deep learning and texture analysis methods were employed for feature extraction, and then the selected feature sets were used for classification. The third problem was to quantify thermograms of multiple sclerosis (MS) patients for better assessment of the disease and monitoring the therapy. Thermal images of two patients and a healthy control from lower limbs were evaluated during experiments, and localized quantification of the effect of MS on the feet of the patients using thermal images method was proposed. The proposed method was fully correlated with the evaluations of physician. It is shown that medical thermal imaging has high potential in many fields of medicine as a non-invasive method for pre-diagnosis and follow-up.Doctoral Thesis Görüntü Tanıma Tabanlı Gökyüzü Kamerası Entegrasyonunu Kullanarak Sezgisel Vektörize Öğrenme Yöntemine Dayalı PV Tahmini(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Yavuz, Levent; Önen, AhmetIn order to ensure the continuity of demand and production balance, the use of renewable energy resources (RES) by countries will increase in the near future. Solar power generation is important for the integration of renewable energy into the power grid, but it can cause problems in power systems due to the uncertain and intermittent nature of solar power. Deep learning methods provide promising results in solar energy prediction, but the performance of these models depends on the initial weights assigned to the network. In this thesis, a novel weight initialization method, the Heuristic Vectorised Learning method, which takes into account certain characteristics of solar generation data has been proposed. This method aims to achieve better accuracy in solar forecasting by combining a statistical approach with a method based on deep learning. The method was compared with other commonly used methods such as Xavier, LeCun, He and Random, and it was seen that the proposed method performed better. Overall, the proposed weight initialization method provides significant benefits for solar forecasting applications in the context of renewable energy integration into the power grid. So, to reach higher accuracy, monitoring the sky is the best option for intra-day forecasts. Therefore, a hybrid model was created for photovoltaic generation prediction by using it together with environmental sensor data. The proposed method and panel shading model achieve higher accuracy values at the Abdullah Gül University campus in Kayseri. The proposed system provides a reliable PV energy forecast for the intraday energy markets.Master Thesis Koroner Arter Hastalığının Makine Öğrenimi Yaklaşımları ile Teşhisi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Halıcı, İkram; Güngör, Vehbi ÇağrıThe World Health Organization states that Coronary Artery Disease (CAD) ranks as a primary cause of recorded fatalities. CAD occurs as a result of the blockage of coronary artery vessels, which are located on the surface of the heart and supply the blood that the heart needs. Diagnosing the disease using traditional methods is challenging and requires costly tests. In recent years, the use of machine learning-based methods has increased as an alternative diagnostic approach. However, existing studies in the literature suffer from low detection rates and long training times. Therefore, there is still a need for reliable and low-cost diagnostic methods. In this thesis, a new model, CSA-PSO-ANN, is proposed for the diagnosis of coronary artery disease. The aim is to reduce the training time of the machine learning model and achieve a higher accuracy in diagnosing the disease. Experiments have been conducted on two publicly available datasets. Parallelization, feature selection, and hyperparameter optimization have been performed to shorten the model's training time. The performance of the model has been compared with well-known machine-learning algorithms and previous studies. The experiments showed that the proposed model effectively diagnoses the disease and outperforms other methods in terms of accuracy and F1 score performance metrics.Master Thesis Çalışan Yıpranması Tahmini ve Film Tavsiyesi için Öneri Sistemi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Özdemir, Fatma; Güngör, Vehbi Çağrı; Coşkun, MustafaBu tezde Makine Öğrenimi Topluluğunda ortaya atılan iki probleme odaklanıyoruz: tavsiye sistemi ve çalışanların yıpranma sorunu. Tavsiye sistemi, kullanıcıların bir ürün satın alırken belirli bir öğeyi tercih edip etmeyeceğini tahmin eden bir bilgi filtreleme sistemidir. Tavsiye sistemleri tahmin etmek için kullanıcı / öğe bilgilerini kullanır. Bu sistemler, özellikle işbirlikçi filtreleme tabanlı sistemler, E-ticarette yaygın olarak kullanılmaktadır. Bu çalışmada, ortak filtreleme ve kullanıcıların / öğelerin yan bilgilerini birleştiren karma bir model öneriyoruz. Önerilen modelde, ilişkili komşuları bulmak ve onları kümelemek için kullanıcıların / öğelerin yan bilgileri kullanılır. Daha sonra, bu kümelere ortak filtreleme yöntemleri uygulanır. Önerilen modelin performansını değerlendirmek için matris çarpanlara ayırma ve yeniden başlatma ile rastgele yürüme uygulanır. Önerilen yaklaşım MovieLens verileri üzerinde sistematik olarak değerlendirilir. Deneysel sonuçlar, kullanıcının / öğenin yan bilgisini kullanan önerilen modelin geleneksel ortak filtreleme yöntemlerinin performansını önemli ölçüde geliştirdiğini göstermektedir. Tezin ikinci bölümünde, hangi kişilerin şu anda çalıştıkları bir şirketten ayrılacağını / devam edeceğini tahmin etmeye çalışan, çalışan yıpranması tahmini sorununu ele almaya çalışıyoruz. Günümüzde şirketler için çalışanların işlerini bırakıp bırakmayacaklarını tahmin etmeleri çok önemlidir. En iyi performans gösteren çalışanların işi bırakması, kuruluşlarda finansal veya kurumsal bilgi kaybına neden olabilir. Bu tür kayıplardan kaçınmak için şirketler, çalışanların yıpranmasını tahmin etmelidir. Bununla birlikte, şirketlerin İK departmanları bu tür tahminleri yapacak kadar gelişmiş değildir. Bu amaçla şirketler, çalışanların yıpranmasını zamanında ve doğru bir şekilde tahmin etmek için veri madenciliği yöntemleri kullanmaktadır. Bu çalışmada, Doğrusal diskriminant analizi (LDA), Naive Bayes, Bagging, AdaBoost, Lojistik Regresyon, Destek Vektör Makinesi (SVM), Rastgele Orman, J48, LogitBoost, Çok Katmanlı Algılayıcı (MLP), K-En Yakın Komşular (KNN), XGBoost, Graph Convolutional Networks, iki özel şirket veri kümesinde (IBM ve Adesso İnsan Kaynakları veri kümelerine) çalışanların yıpranmasını tahmin etmek için uygulanmıştır. Mevcut çalışmalardan farklı olarak, bulgularımızı sistematik olarak F-ölçü, Eğri Altında Alan, doğruluk, duyarlılık ve özgüllük gibi çeşitli sınıflandırma metrikleri ile değerlendiriyoruz. Performans sonuçları, LogitBoost ve Lojistik Regresyon algoritmaları gibi veri madenciliği yöntemlerinin çalışanların yıpranmasını tahmin etmede çok yararlı olabileceğini göstermektedir.Doctoral Thesis Derin Öğrenme Tabanlı Kompozit Malzemelerin Ultrasonik Tomografi Görüntülerinden Kusurların Tespiti ve Sınıflandırılması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Gülşen, Abdulkadir; Güngör, Burcu; Kolukısa, BurakThis thesis introduces novel methodologies for enhancing defect classification and characterization in advanced composite materials by leveraging state-of-the-art machine learning (ML), deep learning (DL), and federated learning (FL) techniques within ultrasonic and acoustic emission (AE) inspection environments. First, a new ultrasonic dataset (UNDT), comprising 1,150 images from 60 distinct composite materials, is introduced. Applying transfer learning methods to both the UNDT and a publicly available dataset demonstrates the efficacy of advanced neural architectures—such as DenseNet121 and VGG19—achieving accuracy rates up to 98.8% and 98.6%, respectively. Next, the scope is extended to AE-based health monitoring by introducing an ensemble feature selection methodology to identify features strongly correlated with damage modes. By selecting amplitude and peak frequency for labeling and subsequently applying unsupervised clustering, the analysis confirms that both traditional AE features (e.g., counts and energy) and less commonly employed features (e.g., partial powers) correlate with distinct defect types. Finally, a novel FL framework is introduced to address the scarcity of publicly available, real-world ultrasonic datasets. This decentralized approach preserves data privacy while maintaining performance levels comparable to centralized methods, ensuring scalability and confidentiality in diverse data environments. Overall, these contributions significantly advance the field of NDT, offering robust defect classification and characterization. In doing so, the findings not only improve the accuracy and reliability of material integrity assessments but also lay a durable foundation for more secure, collaborative, and efficient NDT systems.Master Thesis DEVELOPING A LABEL PROPAGATION APPROACH FOR CANCER SUBTYPE IDENTIFICATION PROBLEM(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2021) Pınar, GÜNERKanser terimi, anormal hücrelerin kontrolden çıkıp diğer dokuları istila ettiği hastalıkları tanımlamak için kullanılır. Çok sayıda kanser türü vardır ve birçok kanser türü, farklı klinik ve biyolojik etkileri olan çeşitli alt tiplere sahiptir. Bu farklılıklar, kanserin farklı alt tiplerinin tedavisi için farklı yöntemlerin izlenmesi gerektiğini göstermektedir. Kişiselleştirilmiş tıbbın geliştirilmesine yardımcı olabileceğinden, kanser alt tiplerini keşfetmek biyoinformatikte önemli bir problemdir. Kanserin alt tipinin bilinmesi, tedavi basamaklarının ve öngörünün belirlenmesinde faydalıdır. Hesaplamalı biyoinformatik yöntemler, farklı kanser alt tiplerinin ortak moleküler patolojisini ortaya çıkararak hedeflenen tedavileri tasarlamak için kanser analizi yapmaya yardımcı olur. Şimdiye kadar, kanser alt tiplerini keşfetmek veya kanseri bilgilendirici alt tiplere ayırmak için çeşitli hesaplamalı yöntemler önerildi. Ancak, mevcut çalışmalar verilerin seyrekliğini dikkate almamakta ve kötü koşullu (tersi alınamayan) çözümle sonuçlanmaktadır. Bu eksikliği gidermek için, bu tezde, uygulamalı sayısal cebir tekniklerini kullanarak kanseri alt tiplerine ayırmak için alternatif bir denetimsiz hesaplama yöntemi öneriyoruz. Daha detaylı olarak, bu etiket yayma tabanlı yaklaşımı kolon, baş ve boyun, rahim, mesane ve meme tümörlerinin somatik mutasyon profillerini sınıflandırmak için uyguladık. Sonra, yöntemimizin performansını temel yöntemlerle karşılaştırarak değerlendirdik. Kapsamlı deneyler, yaklaşımımızın, modern denetimsiz ve denetimli yaklaşımlardan büyük ölçüde daha iyi performans göstererek tümör sınıflandırma görevlerini yüksek oranda yerine getirdiğini kanıtlamaktadır.
- «
- 1 (current)
- 2
- 3
- »
