Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/207
Browse
Browsing Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu by Publisher "Wiley-VCH Verlag GmbH"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 23Citation - Scopus: 23Pressure-Induced Amorphization of MOF-5: A First Principles Study(Wiley-VCH Verlag GmbH, 2018) Erkartal, Mustafa; Durandurdu, Murat; Erkartal, Mustafa; Durandurdu, MuratAmorphous metal-organic frameworks (MOFs) and the amorphization of crystalline MOFs under mechanical stimuli are attracting considerable interest in last few years. However, we still have limited knowledge on their atomic arrangement and the physical origin of crystalline-to-amorphous phase transitions under mechanical stimuli. In this study, ab initio simulations within a generalized gradient approximation are carried out to investigate the high-pressure behavior of MOF-5. Similar to the previous experimental findings, a pressure-induced amorphization is observed at 2 GPa through the simulations. The phase transformation is an irreversible first order transition and accompanied by around 68% volume collapse. Remarkably, the transition arises from local distortions and, contrary to previous suggestions, does not involve any bond breaking and formation. Additionally, a drastic band gap closure is perceived for the amorphous state. This study has gone some way towards enhancing our understanding of pressure-induced amorphization in MOFs.Article Citation - WoS: 10Citation - Scopus: 11Structurally Colored Physically Unclonable Functions With Ultra-Rich and Stable Encoding Capacity(Wiley-VCH Verlag GmbH, 2025) Esidir, Abidin; Ren, Miaoning; Pekdemir, Sami; Kalay, Mustafa; Kayaci, Nilgun; Gunaltay, Nail; Onses, Mustafa SerdarIdentity security and counterfeiting assume a critical importance in the digitized world. An effective approach to addressing these issues is the use of physically unclonable functions (PUFs). The overarching challenge is a simultaneous combination of extremely high encoding capacity, stable operation, practical fabrication, and a widely available readout mechanism. Herein this challenge is addressed by designing an optical PUF via exploiting the thickness-dependent structural color formation in nanoscopic films of ZnO. The structural coloration ensures authentication using widely available bright-field-based optical readout, whereas the metal oxide provides a high degree of structural stability. True physical randomness in spatial position is achieved by physical vapor deposition of ZnO through stencil masks that are fabricated by pore formation in polycarbonate membranes via photothermal processing of stochastically positioned plasmonic nanoparticles. Structural coloration emerges from thin film interference as confirmed via simulation studies. The rich color variation and stochastic definition of domain size and geometry result in chaotic features with an encoding capacity that approaches (6.4 x 105)(2752x2208). Deep learning-based authentication is further demonstrated by transforming these chaotic features into unbreakable codes without field limitations. This ultra-rich encoding capacity, coupled with outstanding thermal and chemical stability, forms a new cutting edge for state-of-the-art PUF-based encoding systems.