Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/206
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Language "tur"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Research Project Çok Ölçekli Malzeme Modellemesi Yoluyla Talaşlı İmalat Çıktılarının Daha Kapsamlı Ve Doğru Analizi(TUBİTAK, 2020) Bal, Burak; LAYEGH KHAVIDAKI, SEYD EHSAN; 0000-0002-7389-9155; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü; Bal, Burak; LAYEGH KHAVIDAKI, SEYD EHSAN; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik Fakültesiİnconel 718 savunma sanayi, uzay-havacılık ve otomotiv için kullanılan ve ileride kullanım alanı_x000D_ daha da genişleyebilecek olan süper alaşımdır. Bu projede Inconel 718 süper alaşımının talaşlı_x000D_ imalat sonucunda yüzeyinde oluşan kalıntı gerilimler, sertlik değişimleri ve kesici takımda oluşan_x000D_ aşınmalar gözlenmiştir. Talaşlı imalat simülasyonları için kullanılan Deform 2D programına, klasik_x000D_ Johnson-Cook malzeme modeli yerine, kristal plastisite tabanlı çok ölçekli malzeme davranışı_x000D_ tanıtılarak daha kapsamlı ve deneysel veriye daha yakın analizler yapılmıştır. Bu konunun seçilme_x000D_ nedeni, gerçek deneysel sonuçlara daha yakın sonuçlar elde edilip beklenmedik üretim hataları_x000D_ ve denemeleri en aza indirebilecek bir yöntem geliştirmektir. Bugüne kadar gerçekleştirilen talaşlı_x000D_ imalat simülasyonlarında malzeme davranışı genellikle tek ölçekli gerinim pekleşmesi, gerinim_x000D_ hızı pekleşmesi ve sıcaklık yumuşamasını kapsayan Johnson-Cook malzeme modelleri ile_x000D_ gerçekleştirilmiştir ve bu modeller malzemelerin mikroyapısal girdilerini içermemektedir. Bu_x000D_ projede ise Johnson-Cook malzeme modeli ile ve karşılaştırmalı olarak çok ölçekli kristal plastisite_x000D_ tabanlı malzeme modeli ile 2D deform programında farklı kesme hızlarında ve farklı ilerleme_x000D_ hızlarında simülasyonlar gerçekleştirilmiştir. Bu projede ilk olarak, Inconel 718 malzemesinin_x000D_ talaşlı imalat deneylerini yapılarak sonuçları gözlenmiştir. Daha sonra Johnson-Cook malzeme_x000D_ modellemesiyle gerçekleştirilen simülasyon sonuçları gözlenmiştir. Son olarak da Inconel 718_x000D_ süper alaşımının kristal plastisite modelinin yapılması ve mikroyapı girdileri ile elde edilen kristal_x000D_ plastisite modeli ile çıkarılan çok ölçekli ve çok eksenli malzeme davranışının Deform 2D_x000D_ simülasyonlarına tanıtılarak simülasyonu gerçekleştirip, elde edilen sonuçlar gözlenmiştir._x000D_ Yapılan simülasyonlar ve deney sonucunda, iki farklı malzeme modelin deneysel sonuçlarla_x000D_ karşılaştırılması yapılmıştır. Mikroyapı girdileri ile elde edilen kristal plastisite modeli ile çıkarılan_x000D_ çok ölçekli ve çok eksenli malzeme davranışının, tek ölçekli malzeme davranışı ile_x000D_ karşılaştırıldığında deneysel sonuçlara daha yakın sonuçlar verdiği gözlemlenmiştir. Böylelikle_x000D_ çok ölçekli malzeme modellemesiyle gerçekleştirilen simülasyonların daha gerçekçi ve güvenilir_x000D_ sonuçlar gösterdiği kanıtlanmıştır.Research Project Farklı Mikroyapısal Değişkenlerin Yüksek Manganlı Fe-%33Mn Çeliğinin Pekleşme Davranışına Etkilerinin Araştırılması(TUBİTAK, 2019) Bal, Burak; 0000-0002-7389-9155; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik Fakültesiİleri yüksek mukavemetli çelikler sahip olmuş oldukları yüksek mukavemet, yüksek süneklik ve_x000D_ yüksek pekleşme kabiliyeti gibi üstün özellikler sayesinde otomotiv, demiryolu, savunma sanayi_x000D_ uygulamalarında ve yapı endüstrisi gibi pek çok farklı alanda tercih edilmektedir. Bu projede yeni_x000D_ nesil yüksek mukavemetli çelikler sınıfından olan yüksek manganlı çeliklerin pekleşme_x000D_ davranışına etki eden farklı mikroyapısal değişkenlerin etkisi kristal plastisite modellemesi_x000D_ yoluyla araştırılmıştır. Öncelikle östenitik Fe-33Mn çeliğinin 1x10-4 s_x000D_ -1 gerinim hızındaki malzeme_x000D_ davranışının, tane sayısı gibi faktörleri girdi olarak kullanarak kristal plastisite modellemesi_x000D_ yapılmıştır ve pekleşme sabitleri bulunmuştur. Daha sonra bulunan pekleşme sabitleri sabit_x000D_ tutularak, malzeme dokusu, hız gradyanı, gerinim artışı ve etkileşim tensörü cinsi gibi tek bir_x000D_ mikroyapısal girdi değiştirilerek bu girdilerin malzemenin toplam pekleşme davranışına etkisi_x000D_ açığa çıkarılmıştır. Spesifik olarak, proje önerisinin üzerine konularak farklı karbon_x000D_ konsantrasyonlarının pekleşme sabitlerine olan etkisi de hesaplanmıştır. Bahsi geçen çeliğin_x000D_ oda sıcaklığında ve düşük gerinim hızındaki malzeme davranışı proje yürütücüsünün daha_x000D_ önceki çalışmalarında çekme testi yardımı ile makro ölçekte gözlemlenmiştir. Fe-33Mn çeliğinin_x000D_ seçilme nedeni, yüksek mangalı östenitik çeliklerinin sahip olduğu çok yüksek pekleşme_x000D_ kapasitesi ile birlikte yüksek süneklik değerleri ve aşınma direnci sayesinde uzay-havacılık,_x000D_ otomotiv, savunma sanayi gibi öncül sektörlerde yer alması ve önümüzdeki yıllarda çok daha_x000D_ fazla miktarda yer alacağına inanılmasıdır. Bu konunun seçilme nedeni ise, bugüne kadar_x000D_ yapılan kristal plastisite çalışmalarında deneysel davranışı modelleyebilmek için genelde tek tip_x000D_ malzeme dokusu, hız gradyanı, gerinim artışı ve etkileşim tensörü kullanılmıştır. Bu doğru bir_x000D_ yaklaşım olmasına rağmen bu girdilerin toplam malzeme pekleşme davranışına etkisi_x000D_ bilinmemektedir. Bu kapsamda kristal plastisite modellemeleri Visco-Plastic Self-Consistent_x000D_ (VPSC) algoritması yardımı ile gerçekleştirilmiştir. Fe-33Mn çeliğinin düşük gerinim hızındaki tek_x000D_ eksenli deformasyon davranışı voce tipi pekleşme teorisi ile modellenmiştir ve bulunan Voce_x000D_ parametreleri bütün simülasyonlarda aynı kalmıştır. Böylelikle değişik mikroyapısal değişkenlerin_x000D_ Fe-33Mn çeliğinin pekleşme davranışına etkileri aynı pekleşme teorisi ile açığa çıkarılmıştır.
