Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/418
Browse
Browsing Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu by Language "tr"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master Thesis Enhancing Breast Cancer Detection With a Hybrid Machine Learning Approach(2024) Etcil, Mustafa; Güngör, Burcu; Güngör, V. Cagri; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiDünya Sağlık Örgütü (WHO) tarafından belirlendiği üzere, göğüs kanseri, son beş yılda 7.8 milyon yeni vakayla en yaygın kanser türlerinden biri olarak ön plana çıkmaktadır. Bu çarpıcı istatistik, gelişmiş tanı yöntemlerine olan acil ihtiyacı vurgulamaktadır. Bu bağlamda, mevcut çalışma, göğüs kanseri tespiti için lojistik regresyon modeli eğitim sürecini iyileştirmek amacıyla klonal seçim algoritması (CSA) ile parçacık sürü optimizasyonunu (PSO) yenilikçi bir şekilde birleştiren CSA-PSO-LR sınıflandırıcısını önermektedir. Bu araştırma, geniş çapta tanınan iki veri seti olan Wisconsin Diagnostik Göğüs Kanseri (WDBC) ve Wisconsin Göğüs Kanseri Veritabanı (WBCD) kullanılarak, performans değerlendirmesi için 10 kat çapraz doğrulama ve Bayes hiperparametre optimizasyonunu içeren katı bir değerlendirme protokolü uygulamaktadır. Ayrıca, çalışma, model eğitim süresini önemli ölçüde kısaltmayı amaçlayan CPU paralelleştirme stratejilerini tanıtmaktadır. Karar ağaçları, aşırı gradyan artırma, en yakın komşular, lojistik regresyon, rastgele ormanlar ve destek vektör makineleri gibi makine öğrenimi algoritmalarına karşı yapılan karşılaştırmalı analizler, CSA-PSO-LR sınıflandırıcısının tespit doğruluğu ve F1-ölçütü açısından üstün performans sergilediğini göstermektedir. Bu araştırma, göğüs kanserinin erken tespitine yönelik yenilikçi bir yaklaşım sunarak, daha etkili tedavi planlarının kolaylaştırılmasına ve hastaların hayatta kalma beklentilerinin artırılmasına katkıda bulunmaktadır.
