Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/207
Browse
Browsing Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu by Language "en"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Conference Object Design and Development of Functional Organic Small Molecules and Polymers for Optoelectronics(Amer Chemical Soc, 2016) Usta, Hakan; Demirel, Gokhan; Facchetti, Antonio; Muccini, Michele; 0000-0002-0618-1979; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Usta, Hakan; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiArticle Citation - WoS: 6Citation - Scopus: 6Experimental Measurements of Some Thermophysical Properties of Solid CdSb Intermetallic in the Sn-Cd Ternary Alloy(Springer, 2016) Ozturk, Esra; Aksoz, Sezen; Altintas, Yemliha; Keslioglu, Kazum; Marasli, Necmettin; 0000-0002-1993-2655; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, Yemliha; 01. Abdullah Gül UniversityThe equilibrated grain boundary groove shapes of solid CdSb in equilibrium with Sn-Cd-Sb eutectic liquid were observed from a quenched sample by using a radial heat flow apparatus. The Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy of the solid CdSb intermetallic were determined from the observed grain boundary groove shapes. The thermal conductivity of the eutectic solid and the thermal conductivity ratio of eutectic liquid to the eutectic solid in the Sn-35.8 at.%Cd-6.71 at.%Sb eutectic alloy at its eutectic melting temperature were also measured with a radial heat flow apparatus and a Bridgman-type growth apparatus, respectively.Article Citation - WoS: 28Citation - Scopus: 27Flexible Electrodes Composed of Flower-Like MoS2 and MXene for Supercapacitor Applications(Pergamon-Elsevier Science Ltd, 2024) Hayat, Hilal Pecenek; Dokan, Fatma Kilic; Onses, M. Serdar; Yilmaz, Erkan; Duran, Ali; Sahmetlioglu, Ertugrul; 0000-0002-6260-2424; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Duran, Ali; 01. Abdullah Gül UniversityFlexible supercapacitors with high charge storage ability are needed for emerging applications in wearable electronics. Here, we introduce a novel flexible supercapacitor electrode by incorporating flower-like MoS2 into MXene via a hydrothermal technique. We mostly focused on the structural design for electrode configuration to enhance the charge storage mechanism. Three different electrodes composed of MoS2, MXene, and MoS2@MXene were fabricated via a versatile drop-casting and drying method. There are unique advantages of incorporating MoS2 with MXene such as the fast electron transfer, hydrophilicity of the interface, and structural stability. The MoS2@MXene // MXene flexible asymmetric supercapacitor device offered a high energy density of 1.21 W h /kg and a power density of 54.45 W /kg. Moreover, the asymmetric device exhibits nearly identical electrochemical behavior following 100 bending cycles at different angles. The high electrochemical activity of MoS2 and MXene and good interaction are ascribed to the superior electrochemical performance of the composite material. Furthermore, this research could guide the development of flexible, high-performance, and low-cost electrodes which will be useful in wearable electronics.Article Citation - WoS: 5Citation - Scopus: 5Formation of a Very High-Density Amorphous Phase of Carbon and Its Crystallization into a Simple Cubic Structure at High Pressure(Elsevier B.V., 2021) Durandurdu, M.; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Durandurdu, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiWe report a direct computational evidence of a two-step transformation sequence for tetrahedral amorphous carbon (ta-C) with increasing pressure. First, ta-C gradually transforms into a very high-density amorphous phase (VHDA) phase. Second, the VDHA phase converts into a simple cubic (SC) crystal. The structural defects formed during the high-pressure treatment play important roles for the formation and stabilization of the SC structure, rather than favorable the SC4 crystal. These phase transformations are reversible. © 2021 Elsevier B.V., All rights reserved.Article Citation - WoS: 3Citation - Scopus: 3High Pressure Modifications in Amorphous Boron Suboxide: An Ab Initio Study(Elsevier Sci Ltd, 2020) Durandurdu, Murat; Durandurdu, Murat; 0000-0001-5636-3183; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiUsing constant pressure ab initio calculations, we probe the high-pressure modifications in amorphous boron suboxide (B6O) consisting of glassy boron trioxide (B2O3) and boron (B) domains up to a theoretical pressure of 100 GPa. At this pressure, the structure remains amorphous. We find a steady increase in the average coordination of both B and oxygen (O) atoms. O atoms mostly attain threefold coordination as in B2O3 glass at high pressures. On the other hand, the mean coordination number of B-atoms reaches six at high pressures and the structural changes in B-rich regions are perceived to be quite analogous to those of amorphous B. B-12 clusters are found to persevere during the pressurizing process and the high-pressure modifications occur predominantly around O-atoms and the regions that connect the pentagonal pyramid-like motifs to each other. Upon pressure release, some high-pressure configurations persist in the model and another noncrystalline structure being about 10% denser than the original state is recovered, suggesting a permanent densification and a possible irreversible amorphous-to-amorphous phase transformation in B6O. The recovered network shows slightly better mechanical properties than the uncompressed model. During the compression and decompression processes, amorphous B6O remains semiconducting. The delocalization of some band tail states is seen at high pressures.Conference Object Novel Method Based on Photothermal Cleavage of Thermolabile Molecules on Au Nanoparticles for Controlled Release(Amer Chemical Soc, 2016) Goren, Ekrem; Cavusoglu, Halit; Yavuz, Emine; Usta, Hakan; Citir, Murat; Yavuz, Mustafa Selman; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Usta, Hakan; Citir, Murat; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiArticle Citation - WoS: 23Citation - Scopus: 23Pressure-Induced Amorphization of MOF-5: A First Principles Study(Wiley-VCH Verlag GmbH, 2018) Erkartal, Mustafa; Durandurdu, Murat; Erkartal, Mustafa; Durandurdu, Murat; 0000-0001-5636-3183; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik FakültesiAmorphous metal-organic frameworks (MOFs) and the amorphization of crystalline MOFs under mechanical stimuli are attracting considerable interest in last few years. However, we still have limited knowledge on their atomic arrangement and the physical origin of crystalline-to-amorphous phase transitions under mechanical stimuli. In this study, ab initio simulations within a generalized gradient approximation are carried out to investigate the high-pressure behavior of MOF-5. Similar to the previous experimental findings, a pressure-induced amorphization is observed at 2 GPa through the simulations. The phase transformation is an irreversible first order transition and accompanied by around 68% volume collapse. Remarkably, the transition arises from local distortions and, contrary to previous suggestions, does not involve any bond breaking and formation. Additionally, a drastic band gap closure is perceived for the amorphous state. This study has gone some way towards enhancing our understanding of pressure-induced amorphization in MOFs.Article Citation - WoS: 10Citation - Scopus: 11Structurally Colored Physically Unclonable Functions With Ultra-Rich and Stable Encoding Capacity(Wiley-VCH Verlag GmbH, 2025) Esidir, Abidin; Ren, Miaoning; Pekdemir, Sami; Kalay, Mustafa; Kayaci, Nilgun; Gunaltay, Nail; Onses, Mustafa Serdar; 0000-0002-0618-1979; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Usta, Hakan; 01. Abdullah Gül UniversityIdentity security and counterfeiting assume a critical importance in the digitized world. An effective approach to addressing these issues is the use of physically unclonable functions (PUFs). The overarching challenge is a simultaneous combination of extremely high encoding capacity, stable operation, practical fabrication, and a widely available readout mechanism. Herein this challenge is addressed by designing an optical PUF via exploiting the thickness-dependent structural color formation in nanoscopic films of ZnO. The structural coloration ensures authentication using widely available bright-field-based optical readout, whereas the metal oxide provides a high degree of structural stability. True physical randomness in spatial position is achieved by physical vapor deposition of ZnO through stencil masks that are fabricated by pore formation in polycarbonate membranes via photothermal processing of stochastically positioned plasmonic nanoparticles. Structural coloration emerges from thin film interference as confirmed via simulation studies. The rich color variation and stochastic definition of domain size and geometry result in chaotic features with an encoding capacity that approaches (6.4 x 105)(2752x2208). Deep learning-based authentication is further demonstrated by transforming these chaotic features into unbreakable codes without field limitations. This ultra-rich encoding capacity, coupled with outstanding thermal and chemical stability, forms a new cutting edge for state-of-the-art PUF-based encoding systems.Article Citation - WoS: 250Citation - Scopus: 262Surface-Enhanced Raman Spectroscopy (SERS): An Adventure from Plasmonic Metals to Organic Semiconductors as SERS Platforms(Royal Soc Chemistry, 2018) Demirel, Gokhan; Usta, Hakan; Yilmaz, Mehmet; Celik, Merve; Alidagi, Husniye Ardic; Buyukserin, Fatih; Demirel, Gokhan; Usta, Hakan; Yilmaz, Mehmet; Celik, Merve; Alidagi, Husniye Ardic; Buyukserin, Fatih; 0000-0002-0618-1979; 0000-0002-9778-917X; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; 01. Abdullah Gül University; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 02. Mühendislik Fakültesi; 02.01. Mühendislik BilimleriThe quantitative determination and identification of bio-/chemical molecules at ultra-low concentrations is a hot topic in several fields including medical diagnostics, environmental science, and homeland security. Molecular detection techniques are conventionally based on optical, electrochemical, electronic, or gravimetric methodologies. Among these methods, surface-enhanced Raman spectroscopy (SERS) is considered as one of the most reliable, sensitive and selective techniques for non-destructive molecular analysis through the amplification of electromagnetic fields and/or creation of charge-transfer states between the chemisorbed analyte molecule and SERS active platform. Unfortunately, the applicability of SERS is rather limited, which is mainly due to the lack of highly sensitive SERS platforms with good stability and reproducibility. In line with this, metal nanoparticles (e.g., Au, Ag, and Cu) have been extensively exploited as SERS active platforms. Although the utilization of metallic nanoparticles in SERS is simple and cost-effective, the poor controllability of the structures and limited formation of hot spots in the detection zone leads to discrepancy in the resulting SERS signals. For these reasons, in the past few years, researchers have focused on fabricating 3-dimensional (3D) SERS platforms, which increase the adsorption of analyte molecules and facilitate hot spot formation in all three dimensions. However, the fabrication of 3D SERS platforms is mostly expensive and technologically demanding. Therefore, the discovery of non-metal alternative approaches is of great interest not only to widen SERS applications but to further elucidate fundamental questions. Considering recent developments on the fabrication and application of SERS active platforms, this review is structured in 3 main directions; (1) implementation of the plasmonic nanoparticles having different shapes into SERS-active platforms, (2) highlighting recent developments in the fabrication and application of 3D SERS-active platforms, and (3) examination of recent novel inorganic and organic semiconductor based platforms for SERS applications. At the end, we conclude with the promises and challenges for the future evolution of SERS.Article Citation - WoS: 6Citation - Scopus: 7Synergistic Effect of Organic Acid on the Dissolution of Mixed Nickel-Cobalt Hydroxide Precipitate in Sulphuric Acid Solution(Edp Sciences S A, 2019) Kursunoglu, Sait; Kursunoglu, Sait; 0000-0002-1680-5482; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; 01. Abdullah Gül UniversityThe synergistic effect of an organic acid on the dissolution of nickel and cobalt from a mixed nickel-cobalt hydroxide precipitate (MHP) in sulphuric acid solution was studied. The effects of sulphuric acid concentration, the type of organic acid, leaching time, leaching temperature and stirring speed on the dissolution of the metals were experimentally investigated. It was observed that there is no beneficial effect of leaching temperature and stirring speed on the dissolution of the metals from the used MHP product which contains 37.7% Ni, 2.1% Co and 5.6% Mn. It was found that citric acid was more effective than oxalic acid for the dissolution of nickel and manganese, whereas oxalic acid was more effective than citric acid for the dissolution of cobalt. The addition of oxalic acid into the leaching system, however, affected the dissolution of nickel negatively because nickel precipitate as nickel oxalate. Therefore, the use of citric acid as synergist for sulphuric acid leaching of MHP product is more promising. After 60 min of leaching, 90.9% Ni, 84.2% Co and 98.1% Mn were dissolved under the following conditions: 0.75 M sulphuric acid, 2 g citric acid, 1/10 solid-to-liquid ratio, 400 rpm stirring speed and 30 degrees C temperature. The experimental results demonstrate that the addition of citric acid as a synergist for sulphuric acid leaching of a MHP product provides beneficial effect for the dissolution of nickel, cobalt and manganese.
