PubMed İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/397
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu by Journal "Applied Optics"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 6Citation - Scopus: 6Absorption Enhancement by Semi-Cylindrical Structures for an Organic Solar Cell Application(Optical Soc Amer, 2020) Hah, Dooyoung; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiOrganic solar cells are attractive for various applications with their flexibility and low-cost manufacturability. In order to increase their attractiveness in practice, it is essential to improve their energy conversion efficiency. In this work, semi-cylindrical-shell-shaped structures are proposed as one of the approaches, aiming at absorption enhancement in an organic solar cell. Poly(3-hexylthiophene-2,5-diyl) blended with indene-C60 bisadduct (P3HT:ICBA) is considered as the active layer. Light coupling to the guided modes and a geometrical advantage are attributed to this absorption enhancement. Finite-difference time-domain methods and finite element analysis are used to examine the absorption spectra for two types of devices, i.e., a debossed type and an embossed type. It is shown that absorption enhancement increases as the radius of the cylinder increases, but reaches a saturation at about 4-mu m radius. The average absorption enhancement with an active layer thickness of 200 nm and radius of 4 mu m, and for incidence angles between 0 degrees and 70 degrees, is found as 51%-52% for TE-polarized input and as 30%-33% for TM-polarized input when compared to a flat structure. Another merit of the proposed structures is that the range of incidence angles where the integrated absorption is at the level of the normal incidence is significantly broadened, reaching 70 degrees-80 degrees. This feature can be highly useful especially when organic solar cells are to be placed around a round object. The study results also exhibit that the proposed devices bear broadband absorption characteristics. (C) 2020 Optical Society of AmericaArticle Citation - WoS: 5Citation - Scopus: 5Linear Variable Optical Attenuators With Shaped-Finger Comb-Drive Actuators(Optical Soc Amer, 2020) Hah, Dooyoung; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiA design method is proposed for variable optical attenuators (VOAs), aiming at linear attenuation-voltage characteristics, and verified by finite element analysis. Devices of interest are planar VOAs based on microelectromechanical systems technology, with either a knife-edge shutter or a reflector. The proposed method calculates the shape of the fingers of the comb-drive actuators that are used to move the optical component (shutter or reflector) to change the attenuation level. The calculation is, in effect, tantamount to solving a differential equation that encompasses the optical model of the device, electromechanical behavior of the actuators, and the objective of the design, i.e., linear attenuation-voltage characteristics. The design method is almost all-analytical with minimum usage of numerical analysis. The obtained designs are further examined by three-dimensional finite element analysis to understand their effectiveness and to probe the validity of the approximations used. The best linearity factor (defined as % deviation from the ideal case) obtained is 1.34% for both shutter- and reflection-type devices when the conditions are set as 1-dB insertion loss and 50-dB maximum attenuation. (C) 2020 Optical Society of America
