Scopus İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/395
Browse
Browsing Scopus İndeksli Yayınlar Koleksiyonu by Department "AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Conference Object Citation - Scopus: 5Emotion Detection Using Multivariate Synchrosqueezing Transform via 2D Circumplex Model(Institute of Electrical and Electronics Engineers Inc., 2018) Ozel, Pinar; Akan, Aydin; Yilmaz, Bulent; Özel, Pınar; Akan, Aydin I.; Yilmaz, BulentEmotion detection by utilizing signal processing methods is a challenging area. An open issue in emotional modeling is to obtain an optimum feature set to use for the classification process. This study proposes an approach for emotional state classification by the investigation of EEG signals via multivariate synchrosqueezing transform (MSST). MSST is a post-processing technique to compose a localized time-frequency representation yielding multivariate syncyrosqueezing coefficients. After obtaining these coefficients from EEG signals for 18 subjects from DEAP dataset, coefficients and self-assessment-mannequins (SAM) labels of those subjects are used for emotional state classification by using support vector machines (SVM) nearest neighbor, decision tree, and ensemble methods. The accuracy rate is 70.6% for high valence high arousal (HVHA), 75.4% for low valence high arousal (LVHA), 77.8% for high valence low arousal (HVLA), and 77.2% for low valence low arousal (LVLA) cases using SVM. © 2019 Elsevier B.V., All rights reserved.Conference Object Real-Time Robotic Car Control Using Brainwaves and Head Movement(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2018) Ozturk, Nedime; Yilmaz, Bulent; Onver, Ahmet YasinEmotiv Epoc Headset is a portable and low-cost device. In this study, Emotiv Epoc headset was used in order to obtain real-time gyro and EEG signals. The aim of this study was to control a robotic car in real-time by using head movement and opening and closing of the eyes. The maximum and minimum amplitude of the gyro signal, and the ratios of the beta waves of O1 and O2 channel to alpha waves of the same channels were used as threshold values. These threshold values were used to determine the direction of the robotic car. Because of its low-cost and easy implementation, Arduino Uno was used to manage the robotic car. This study has shown that brain waves and head movements can control a device in real time. This system has the potential to be used in neurofeedback and brain-computer interface applications.Conference Object Detection of Variation Instances on Colonoscopy Videos using Structural Similarity Index(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2018) Kacmaz, Rukiye Nur; Yilmaz, BulentThe aim of this study is to reduce the number of images extracted from the videos recorded by the specialists during the colonoscopy process for further examination, thereby enabling the specialist to deal with fewer images. Since the images obtained from the videos are very similar, the main assumption of this study is that the whole video can be represented by fewer images. The approach used in this study is the structural similarity index. Totally, images were obtained from 4 different videos coming from healthy, ulcerative colitis, Crohn's, and polyp patients. The noisy images in these videos were eliminated manually. When the structural similarity index between two consecutive clear images was less than 0.83, the second image was selected and shown to the specialist for his/her examination. By this way, the frames carrying significantly new information from the videos were defined as the variation instances. The tests on healthy or diseased colon videos showed that only 5-10% of the clear images provide significantly new information.Conference Object Effect of Bilinear Interpolation on the Texture Analysis of Colonoscopy Images(IEEE345 E 47TH ST, NEW YORK, NY 10017 USA, 2017) Kacmaz, Rukiye Nur; Yilmaz, BulentInterpolation is a method that is used to obtain unknown intensities with the help of known intensities on an image. This method is frequently used in the literature to eliminate light reflection on colonoscopy images. Texture features are the most important characteristics used to describe the region or objects of interest in the image. They are the measures of intensity variation of a surface that determine properties such as smoothness, roughness, and regularity. The aim of this study is to find out the how bilinear interpolation applied on colonoscopy images with reflection impact texture features obtained from the same images. A research carried out to make reasonable comparison between a texture feature from an image with no reflection and the same feature obtained from the same image with synthetically added reflections with various percentages. Using the approaches like gray level co-occurence matrix (GLCM), gray level run length matrix (GLRLM), neighborhood gray tone difference matrix (NGTDM) 126 features were extracted from each 32x32 sub-images coming from 610 colonoscopy images. Several of the features extracted from sub-images with no reflection and reflection were not statistically significantly different, while majority of them were affected from the reflections.Article Citation - WoS: 43Citation - Scopus: 45Highly Efficient Cd-Free Alloyed Core/Shell Quantum Dots With Optimized Precursor Concentrations(Amer Chemical Soc, 2016) Altintas, Yemliha; Talpur, Mohammad Younis; Unlu, Miray; Mutlugun, EvrenThe chemical composition, the emission spectral bandwidth, and photoluminescence quantum yield of a semiconductor quantum dot (QD) play an important role in the assessment of the performance of the applications related to the quantum dots. Quantum dots based on environmentally friendly compositions with high optical performance have been in demand for high-end technological applications. In this work, we propose and demonstrate a detailed synthesis approach for environmentally friendly and highly efficient InPZnS alloy/ZnS shell quantum dots. Following a systematic study of the ratio and type of the precursors involved, we achieved alloyed core shell InPZnS/ZnS QDs with tunable emission across the visible spectrum, having a record quantum efficiency up to 78% along with a full width at half-maximum as narrow as 45 nm. The effect of the systematic shell growth has been further investigated using time-resolved photoluminescence characterizations along with the observation of the suppression of the nonradiative decay channels, with the photoluminescence lifetime prolonged from 20.3 to 50.4 ns. The development of highly efficient and environmentally friendly QDs will pave the way for robust, sustainable optoelectronic applications.Article Citation - Scopus: 1AlN Piezoelectric Quad-Actuators for 2D Optical Micro Scanning(Taylor & Francis Ltd, 2022) Hah, DooyoungPiezoelectric actuation has been one of the frequent choices for optical micro scanning. In most of the cases, lead zirconate titanate (PZT) has been used as the piezoelectric material. However, PZT has a potential issue in biomedical applications due to the content of lead. For this, AlN can be used as an alternative. The main drawback of AlN is its low piezoelectric coefficients. In order to overcome such a drawback, this paper presents a novel actuator configuration, designed for a quasi-static operation mode. Quad-actuators and meander-shaped hinges are the essence of the proposed actuator configuration. Numerical simulation study is carried out to prove the concept of the device. The study also shows that the proposed scanner can have the optical scan angle of 9 degree at a quasi-static mode. Two different scan modes, a raster-like mode and a Lissajous mode are tested, demonstrating the two-dimensional scanning capability of the device.Article Citation - WoS: 11Citation - Scopus: 14Detection of Movement Intention in EEG-Based Brain-Computer Interfaces Using Fourier-Based Synchrosqueezing Transform(World Scientific Publ Co Pte Ltd, 2021) Karakullukcu, Nedime; Yilmaz, BulentPatients with motor impairments need caregivers' help to initiate the operation of brain-computer interfaces (BCI). This study aims to identify and characterize movement intention using multichannel electroencephalography (EEG) signals as a means to initiate BCI systems without extra accessories/methodologies. We propose to discriminate the resting and motor imagery (MI) states with high accuracy using Fourier-based synchrosqueezing transform (FSST) as a feature extractor. FSST has been investigated and compared with other popular approaches in 28 healthy subjects for a total of 6657 trials. The accuracy and f-measure values were obtained as 99.8% and 0.99, respectively, when FSST was used as the feature extractor and singular value decomposition (SVD) as the feature selection method and support vector machines as the classifier. Moreover, this study investigated the use of data that contain certain amount of noise without any preprocessing in addition to the clean counterparts. Furthermore, the statistical analysis of EEG channels with the best discrimination (of resting and MI states) characteristics demonstrated that F4-Fz-C3-Cz-C4-Pz channels and several statistical features had statistical significance levels, p, less than 0.05. This study showed that the preparation of the movement can be detected in real-time employing FSST-SVD combination and several channels with minimal pre-processing effort.Article Citation - WoS: 3Citation - Scopus: 3Excitonic Interaction Amongst InP/ZnS Salt Pellets(Royal Soc Chemistry, 2017) Altintas, Yemliha; Yazici, Ahmet Faruk; Unlu, Miray; Dadi, Seyma; Genc, Sinan; Mutlugun, EvrenSalt matrix has recently been introduced as a promising robust platform for embedding colloidal quantum dots to provide them with photo stability for versatile applications. This work demonstrates the excitonic interaction amongst high efficiency colloidal InP/ZnS quantum dots embedded in a KCl salt matrix. By varying the donor acceptor ratio within the solid platform, 65% Forster Resonance Energy Transfer (FRET) efficiency was attained. Optimizing the donor : acceptor ratio, we demonstrated the first FRET-enabled Cd-free pellets for white light generation possessing a color rendering index (CRI) of 84.7, correlated color temperature (CCT) of 5347.5 K, and a high luminous efficacy of optical radiation value (LER) of 324.3 lm/W-opt. Our study of excitonic interactions within quantum dot-loaded salt matrices will open new possibilities for future versatile optoelectronic applications.
