Scopus İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/395
Browse
Browsing Scopus İndeksli Yayınlar Koleksiyonu by Department "AGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article A rational utilization of reinforcement material for flexural design of 3D-printed composite beams(SAGE PUBLICATIONS LTD, 1 OLIVERS YARD, 55 CITY ROAD, LONDON EC1Y 1SP, ENGLAND, 2019) Ciftci, Cihan; Sas, Hatice S.Recent developments in composite industry address the adaptation of 3D printing technology to overcome the design and manufacturing challenges of the traditional composite processing techniques. This adaptation can be performed with the development of design methodologies corresponding to the type of structural load-carrying members in a structure. Considering the frequently use of beams in structures, the development of the design methodology of beams is essential for the adaptation of the additive manufacturing. Therefore, in this paper, the flexural loading concept is analytically formulated to derive moment capacity for the flexural behavior of 3D-printed composite beams. Then, the formulation is adapted to develop a design methodology of 3D-printed laminates under flexural loading. Additionally, the analytical solutions developed for the design methodology presented in this paper were verified with a good agreement with experimental studies.Conference Object Effect of Ambient Temperature on the Flexural Behavior of 3D Printed Composite Beams(Soc. for the Advancement of Material and Process Engineering Janie@sampe.org, 2018) Yildirim, Afsin Talha; Eroglu, Fatih; Yesilyurt, Ogulcan; Albayrak, Kubilay; Sas, Hatice Sinem; Çiftçi, CihanAdaptation of the additive manufacturing technology with 3D printers may lead to a new track in the manufacturing of composite materials. This additive manufacturing technology aims to mitigate manufacturing challenges and related design limitations of traditional composite manufacturing methods. The implementation of 3D printing of composite materials has the potential of decreasing the material cost by developing scientific methodologies to understand and optimize this printing process. This study focuses on understanding the flexural behavior of 3D printed composite beam elements and providing material data of both matrix and reinforcement components of composite materials. In this study, the flexural performance at different thermal conditions is experimentally investigated. This investigation involves the effect of the matrix material with and without short-fiber reinforcements for a specified fiber placement in the beam and fiber filaments placement in compression and tension sides of the composite beam elements along with the ambient temperature change. © 2018 Elsevier B.V., All rights reserved.Article Citation - WoS: 49Citation - Scopus: 53Comprehensive Experimental Analysis of the Effects of Elevated Temperatures in Geopolymer Concretes With Variable Alkali Activator Ratios(Elsevier, 2023) Ozbayrak, Ahmet; Kucukgoncu, Hurmet; Aslanbay, Huseyin Hilmi; Aslanbay, Yuksel Gul; Atas, OguzhanBy growing population and rapid urbanization, demand for concrete increases exponentially. Researches on use of fly ash material in waste product class for concrete production are important to produce concrete more environmentally friendly. However, there is a need for more research to use geopolymer concrete (GPC) in every field where ordinary Portland cement concrete (OPC) is used. Therefore, it is crucial to experimentally investigate thermal properties as well as me-chanical properties of geopolymer concrete. As investigated thermal properties, the main factor affecting strength development of GPC is alkali activator ratios. In this study, GPC prism samples with nine different compositions, produced by various alkali ratios. After flexural strength tests, they were cut into cubes and exposed to 400 degrees C, 600 degrees C and 800 degrees C, then they were subjected to compressive strength tests. Results obtained from different AA/FA and SS/SH ratios were eval-uated as mechanical properties at ambient temperature and physical, mechanical and micro-structural properties at elevated temperature. An empirical formula, which considers the effect of activator ratios, was proposed to calculate flexural strength depending on compressive strength of samples at ambient temperature. As an increase of SS/SH and AA/FA ratios, compressive strength increased, while flexural strength decreased. The increase in AA/FA ratio decreased compressive strength of samples exposed to high temperatures, while increase in SS/SH ratio did not deter-mine at elevated temperatures. There is an inverse change with AA/FA ratio and parallel change with SS/SH ratio between compressive strengths of samples at ambient temperature and exposed to high temperature.Conference Object Rehabilitation of Water and Environment of The TKI - GELI/YLI Opencast Mine Lakes(Chamber of Mining Engineers of Turkey maden@maden.org.tr, 2013) Delibalta, Mahmut Suat; Uzal, NiǧmetDuring the search, production and enrichment process of mining operations the air, soil, water resources and living organisms are affected adversely. In coal opencast production, with the rise of surface water and ground water level large or small ponds are composed. The most important environmental problems of these ponds are low pH (acidic characteristic) and high metal concentrations (Fe, Mn, Al, Cu, Pb, Zn etc.) of these ponds, besides the sulfide minerals containing (S04) and the waste materials. These ponds needed to be rehabilitated for is one the sustainability of natural resources. In this study, the average pH values 6.22-7.79, turbidity (NTU) 0.63-6.71, sulphate content 840-1720 mg/L, KOI 2.27-61.5mg/L and electrical conductivity 1.72 -2.71 mS/cm have been measured during the monitoring study of three different lignite opencast mine post-production lakes of the TKI -GELI and YLI. The results were evaluated within the framework of relevant laws and regulations. Analyses were performed in three-month periods. © 2014 Elsevier B.V., All rights reserved.
