WoS İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/394
Browse
Browsing WoS İndeksli Yayınlar Koleksiyonu by Department "AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Conference Object In-silico Identification of Papillary Thyroid Carcinoma Molecular Mechanisms(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2019) Ersoz, Nur Sebnem; Guzel, Yasin; Bakir-Gungor, BurcuRepresenting approximately 70% to 80% of thyroid cancers, papillary thyroid cancer (PTC) is the most common type of thyroid cancers. PTC is seen in all age groups, but it is seen more frequently in women than in men. Detection of biomarker proteins of papillary thyroid cancinoma plays an important role in the diagnosis of the disease. In this study, we aim to find target genes and pathways that are associated with papillar thyroid carcinoma, by integrating different bioinformatics methods. For this purpose, usingin-silico methodologies, candidate genes and pathways that could explain disease development mechanisms are identified. Throughout this study, firstly we identified differentially expressed genes as the amount of their protein product differ between patient and healthy groups. Secondly, by using active subnetworks search algorithms, topologic analyses and functional enrichment tests, candidate proteins,which could be thought as PTC biomarkers, and affected pathways are identified.Other Structure Health Monitoring Using Wireless Sensor Networks on Structural Elements (vol 82, pg 68, 2019)(ELSEVIER, RADARWEG 29, 1043 NX AMSTERDAM, NETHERLANDS, 2020) Ayyildiz, Cem; Erdem, H. Emre; Dirikgil, Tamer; Dugenci, Oguz; Kocak, Taskin; Altun, Fatih; Gungor, V. CagriThis paper presents a system that monitors the health of structural elements in Reinforced Concrete (RC), concrete elements and/or masonry buildings and warn the authorities in case of physical damage formation. Such rapid and reliable detection of impairments enables the development of better risk management strategies to prevent casualties in case of earthquake and floods. Piezoelectric (PZT) sensors with lead zirconate titanate material are the preferred sensor type for fracture detection. The developed sensor mote hardware triggers the PZT sensors and collects the responses they gather from the structural elements. It also sends the collected data to a data center for further processing and analysis in an energy-efficient manner utilizing low-power wireless communication technologies. The access and the analysis of the collected data can be remotely performed via a web interface. Performance results show that the fractures serious enough to cause structural problems can be successfully detected with the developed system.Conference Object Ensemble Churn Prediction for Internet Service Provider with Machine Learning Techniques(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2020) Goy, Gokhan; Kolukisa, Burak; Bahcevan, Cenk; Gungor, Vehbi CagriWith the developing technology in every fields, a competitive marketing environment has been arised In this competitive environment analyzing customer behavior has become vital In particular, the ability to easily change any service provider has become vet) , critical for the company to continue its existence At the same time, the amount of financial resources spent on retaining instituters much less than to obtain new clients. In this context, the traditional methods of examining vast amount of data obtained today for establishing decision support systems have lost their validities In this study. we used a dataset which is provided by TurkNet serving as an internet service provider in Turkey. Various preprocessing steps has performed on this dataset and then classification algorithms ran. Afterwards results have obtained and compared. The results of these experiments analyzed in terms of the area under the curve value In this context the aunt successful classifier algorithm has been determined as the Random Trees algorithm with a value of 0.936.Conference Object Citation - Scopus: 2Street Vendor Detection: Helping Municipalities Make Decisions With Actionable Insights(IEEE, 2021) Agba, Hatice Nur; Tahir, AbdullahStreet vendors are quite common in countries across the world. By the prevalence of mobile surveillance systems, increasing demand for automatic detection of street vendors for further decisions and planning by the city administrators emerged. In this paper, an object detector is developed using a MobileNet SSD object detection algorithm to detect vendors on the street. For this study images were used, however, in the future this technique could be used for real time video footage from street cameras. Since this is the first study tackling this issue, a data set was created from scratch. The accuracy achieved by the algorithm is promising considering the size of the data set and the minimal computational power available. The goal of this research is to pave the way for more work to be done in this area and help municipalities improve their decision making process regarding street vendor activities in countries like Mexico, Pakistan, China, Turkey, etc.Article Human identification using palm print images based on deep learning methods and gray wolf optimization algorithm(SPRINGER, 2024) Alshakree, Firas; Akbas, Ayhan; Rahebi, JavadPalm print identification is a biometric technique that relies on the distinctive characteristics of a person’s palm print to distinguish and authenticate their identity. The unique pattern of ridges, lines, and other features present on the palm allows for the identification of an individual. The ridges and lines on the palm are formed during embryonic development and remain relatively unchanged throughout a person’s lifetime, making palm prints an ideal candidate for biometric identification. Using deep learning networks, such as GoogLeNet, SqueezeNet, and AlexNet combined with gray wolf optimization, we achieved to extract and analyze the unique features of a person’s palm print to create a digital representation that can be used for identification purposes with a high degree of accuracy. To this end, two well-known datasets, the Hong Kong Polytechnic University dataset and the Tongji Contactless dataset, were used for testing and evaluation. The recognition rate of the proposed method was compared with other existing methods such as principal component analysis, including local binary pattern and Laplacian of Gaussian-Gabor transform. The results demonstrate that the proposed method outperforms other methods with a recognition rate of 96.72%. These findings show that the combination of deep learning and gray wolf optimization can effectively improve the accuracy of human identification using palm print images.Conference Object Identification of Shared Pathways Among Immune Related Diseases Utilizing Active Subnetworks(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2020) Eryilmaz, Mahmut Kaan; Kuzudisli, Cihan; Gungor, Burcu BakirDifferent, but related diseases often contain shared symptoms indicating the presence of possible overlaps in underlying pathogenic mechanisms. The identification of the shared pathways and related factors across these diseases helps to better understand the causes of these diseases, to prevent and treat these diseases. In this study, using immune-related diseases, we proposed a new method on how to compare the development mechanisms of related diseases based on biological pathways. Following the developments in genomic technologies, the genotyping gets cheaper and easier, and hence genome-wide association studies (GWAS) emerged. By this means, via studying big-sized case-control groups for a specific disease, potential genetic variations, single nucleotide polymorphisms (SNPs) could he identified. With the help of these studies, in which around a million of SNPs are scanned, the variations and genes that could have a role in specific disease development could be detected. In this study, via using available GWAS datasets and human protein-protein interaction network, and via detecting active subnetworks and affected pathways, seven immune related diseases are analyzed. Via investigating the similarities among the identified pathways for related diseases, we aim to define the underlying pathogenic mechanisms, and hence to contribute to the elucidation of disease development mechanisms and to the drug repositioning studies.Article Citation - WoS: 15Citation - Scopus: 16Stacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimation(Springer Heidelberg, 2023) Akbas, Ayhan; Buyrukoglu, SelimIn wireless sensor network projects, it is generally desired to cover the area to be monitored at a given cost and to achieve the maximum useful network lifetime. In the deployment of the wireless sensors, it is necessary to know in advance how many sensor nodes will be required, how much the distance between the nodes should be, etc., or what the transmit power level should be, etc. depending on the channel parameters of the area. This necessitates accurate calculation of variables such as maximum network lifetime, communication channel parameters, number of nodes to be used, and distance between nodes. As numbers reach to the order of hundreds, calculation tends to a NP hard problem to solve. At this point, we employed both single-based and stacked ensemble-based machine learning models to speed up the parameter estimations with highly accurate outcomes. Adaboost was superior over other models (Elastic Net, SVR) in single-based models. Stacked ensemble models achieved best results for the WSN parameter prediction compared to single-based models.Article Citation - WoS: 5Node-Level Error Control Strategies for Prolonging the Lifetime of Wireless Sensor Networks(IEEE-Inst Electrical Electronics Engineers Inc, 2021) Tekin, Nazli; Yildiz, Huseyin Ugur; Gungor, Vehbi CagriIn Wireless Sensor Networks (WSNs), energy-efficiency and reliability are two critical requirements for attaining a long-term stable communication performance. Using error control (EC) methods is a promising technique to improve the reliability of WSNs. EC methods are typically utilized at the network-level, where all sensor nodes use the same EC method. However, improper selection of EC methods on some nodes in the network-level strategy can reduce the energy-efficiency, thus the lifetime of WSNs. In this study, a node-level EC strategy is proposed via mixed-integer programming (MIP) formulations. The MIP model determines the optimum EC method (i.e., automatic repeat request (ARQ), forward error correction (FEC), or hybrid ARQ (HARQ)) for each sensor node to maximize the network lifetime while guaranteeing a pre-determined reliability requirement. Five meta-heuristic approaches are developed to overcome the computational complexity of the MIP model. The performances of the MIP model and meta-heuristic approaches are evaluated for a wide range of parameters such as the number of nodes, network area, packet size, minimum desired reliability criterion, transmission power, and data rate. The results show that the node-level EC strategy provides at least 4.4% prolonged lifetimes and 4.0% better energy-efficiency than the network-level EC strategies. Furthermore, one of the developed meta-heuristic approaches (i.e., extended golden section search) provides lifetimes within a 3.9% neighborhood of the optimal solutions, reducing the solution time of the MIP model by 89.6%.Article Citation - WoS: 44Citation - Scopus: 52CBI4.0: A Cross-Layer Approach for Big Data Gathering for Active Monitoring and Maintenance in the Manufacturing Industry 4.0(Elsevier, 2021) Faheem, Muhammad; Butt, Rizwan Aslam; Ali, Rashid; Raza, Basit; Ngadi, Md Asri; Gungor, Vehbi CagriIndustry 4.0 (I4.0) defines a new paradigm to produce high-quality products at the low cost by reacting quickly and effectively to changing demands in the highly volatile global markets. In Industry 4.0, the adoption of Internet of Things (IoT)-enabled Wireless Sensors (WSs) in the manufacturing processes, such as equipment, machining, assembly, material handling, inspection, etc., generates a huge volume of data known as Industrial Big Data (IBD). However, the reliable and efficient gathering and transmission of this big data from the source sensors to the floor inspection system for the real-time monitoring of unexpected changes in the production and quality control processes is the biggest challenge for Industrial Wireless Sensor Networks (IWSNs). This is because of the harsh nature of the indoor industrial environment that causes high noise, signal fading, multipath effects, heat and electromagnetic interference, which reduces the transmission quality and trigger errors in the IWSNs. Therefore, this paper proposes a novel cross-layer data gathering approach called CBI4.0 for active monitoring and control of manufacturing processes in the Industry 4.0. The key aim of the proposed CBI4.0 scheme is to exploit the multi-channel and multi-radio architecture of the sensor network to guarantee quality of service (QoS) requirements, such as higher data rates, throughput, and low packet loss, corrupted packets, and latency by dynamically switching between different frequency bands in the Multichannel Wireless Sensor Networks (MWSNs). By performing several simulation experiments through EstiNet 9.0 simulator, the performance of the proposed CBI4.0 scheme is compared against existing studies in the automobile Industry 4.0. The experimental outcomes show that the proposed scheme outperforms existing schemes and is suitable for effective control and monitoring of various events in the automobile Industry 4.0.Article Operator User Management System Based on the TMF615 Standard(Springer, 2016) Yigit, Melike; Macit, Muhammed; Gungor, V. Cagri; Kocak, Taskin; Ozhan, OguzMulti-vendor telecommunications networks in a typical service provider environment are managed using multiple proprietary user management systems (UMS), supplied by the operational support system (OSS) vendors. The management of a typical service provider includes communications solutions put into place between the global UMS and the local UMS. Nowadays, in service provider environments OSSs exist that use multi-vendor communications' protocols. In the telecommunications sector, the centralized management of all these different OSSs can cause serious problems for the network operation. In this respect, there is an urgent need for a standardized and centralized provisioning and auditing mechanism for the operators and their entitlements that work on these management systems. To address this need and to provide efficient operations among different service provider network components, this paper outlines the design and development of a TMF615 (Tele Management Forum) standard-based, common communication platform. In this respect, the proposed approach includes a common interface to address communication problems in multi-vendor, service provider environments. The interface and performance evaluations developed are some of the first solutions in this field, and the resulting solutions are converted into a commercial product with a high added value. In this regard, our proposed approach makes an important contribution to scientific literature and commercial applications. The realization of the proposed TMF615 standard-based interface enables the efficient and easy integration of existing and new OSSs of the service providers. In this way, a standardized interface is offered, along with a common communications platform adequate for all different systems. The vendors are thereby only responsible for application development based on specifications, and a standardized communications process is introduced for all related systems. This significantly facilitates the management of service providers, system performance is improved, and a massive cost reduction is provided at the same time. Consequently, the efficient management of network components is provided using a common standardized interface. In this respect, we aim to explain the TMF615 specifications; the evolution of UMS, OSSs and TMF615 with centralized UMS, as well as the implementation and performance evaluation of the TMF615 protocol are all explained in this paper.
