Enstitüler
Permanent URI for this communityhttps://hdl.handle.net/20.500.12573/391
Browse
Browsing Enstitüler by Department "Fen Bilimleri Enstitüsü / Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı"
Now showing 1 - 20 of 65
- Results Per Page
- Sort Options
Master Thesis Alfa Bandı Nöral Geri Besleme Kullanarak Kısa Dönem Hafıza Performansının İyileştirilmesi(Abdullah Gül Üniversitesi, 2018) GÖKŞİN, BARIŞ; Gökşin, Barış; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; GÖKŞİN, BARIŞ; 01. Abdullah Gül UniversityHafızanın yaşın ilerlemesi ile zayıflaması bireyler için önemli bir problemdir ve bu problemin Alzheimer'da olduğu gibi bilinen tatmin edici bir tıbbi tedavi yöntemi bulunmamaktadır. Beyin-bilgisayar arayüzü teknolojisindeki son gelişmeler bireylerin beyin aktivitesinin ölçülmesine olanak sağlamıştır, nöral geri bildirim de beyin bilgisayar arayüzünü kullanan metotlardan biridir. Nöral geribildirim metodunun psikolojik bozukluklar üzerine uygulanması hakkında birçok araştırma olmasına rağmen, kısa dönem hafıza performansı üzerine uygulamaları hakkında yapılmış sınırlı sayıda araştırma vardır. Bu tez kişilerin alfa bandı nöral geribildirim eğitimi ile kısa dönem hafızalarının geliştirilmesinin mümkün olup olmadığını araştırmaktadır. 11 sağlıklı erkek katılımcıdan kablosuz EEG cihazı ile EEG sinyalleri toplanmıştır. Nöral geri bildirim yöntemi alfa bandı gücünün gerçek zamanlı artırılması için kullanılmıştır. Nöral geribildirimin sağladığı kısa dönem hafıza performansındaki iyileşmenin ölçülmesi amacıyla 5 seanslık nöral geribildirim eğitimi öncesi ve sonrası 10 kelimeden oluşan ezber testi tüm katılımcılara uygulanmıştır. Sonuçlar nöral geribildirim seansları esnasında 11 kişiden 6'sının alfa bandı gücünü spektrumdaki diğer bantlara göre artırabildiğini göstermiştir. Fakat kısa dönem hafıza performansında belirgin bir gelişme olmamıştır. Sonuç olarak nöral geribildirimin katılımcıların zihinlerini bilinçli bir şekilde odaklayabilmesinde faydalı olduğu söylenebilir. Fakat nöral geribildirim eğitiminin kısa dönem hafızayı kesinlikle artırdığı veya alakasız olduğunu söylemek güçtür.Master Thesis Anahtarlamalı Relüktans Motorlarında Tork Dalgalanmasının Azaltılması için Uyarlanabilir Çevrimiçi Tork Paylaşım Fonksiyonu Geliştirilmesi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Genç, Ufuk; Tekgün, Burak; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiElectrical machines play a crucial role in modern society by transforming electrical energy into mechanical energy and vice versa. These machines include various types of motors and generators, which are used in a wide range of applications such as electric vehicles, industrial automation, and renewable energy systems. One of the popular electrical machines is the switched reluctance machine (SRM), which is known for its high reliability and efficiency. The key advantages of the SRM include its simple structure, robustness, and low cost. The SRM does not require a permanent magnet or an excitation winding, making it an attractive option for high-volume, low-cost applications. Despite its advantages, the SRM also has some disadvantages that need to be considered. One of the main drawbacks of the SRM is being susceptible to torque ripple, which can result in vibration and noise. In order to overcome these disadvantages, advanced control methods have been developed for the SRM. One such control method is the torque sharing function, which distributes the load among the phases of the motor. This results in improved torque characteristics and reduced torque ripple. However, this control method also has some disadvantages, such as increased complexity and the need for more advanced sensors and controllers. Additionally, the torque sharing function may result in reduced efficiency, especially at high speeds. The purpose of this thesis study is to improve the torque ripple performance of SRM for a wide speed range through the proposed control approach. In conclusion, minimizing the torque ripple is a critical aspect of the operation of SRMs, and a range of control strategies and techniques can be used to achieve this goal. By reducing the torque ripple, SRMs can deliver improved efficiency, performance, and reliability, making them even more attractive for a wide range of applications.Doctoral Thesis Anormallik Tespiti için Veri Madenciliği(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Kaçmaz, Rukiye Nur; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityGastroentereloji uzmanları için kolon anormalliklerinin tespit edilmesi en zor görevlerden birisidir. Kolonoskopi herhangi bir anormalliği izlemek için kolondan video veya görüntüler kaydetmenin en yaygın yöntemidir. Bununla birlikte işlem sırasında elde edilen görüntü veya videolar, kolonoskopi probunun ya da kapsülün hızlı hareketinden kaynaklanan hareket gürültüsü, kapsülde ve probda ışık kaynağından kaynaklanan yansıma gürültüsü (YG), yetersiz veya aşırı aydınlatmadan kaynaklanan uygun olmayan kontrast gürültüsü, mide öz suyu, baloncuklar veya kalıntılar içermektedir. Bu tarz gürültüler içeren görüntülere bilgi taşımayan çerçeveler adı verilmektedir. Hastalık tespiti işlemi ise bilgi içeren olarak adlandırılan temiz görüntüler ile yürütülmektedir. İlk çalışmada tekstür tabanlı otomatik polip tespitinde YG'nin etkisini ve YG'yi ortadan kaldırmak için kullanılan görüntü enterpolasyonunun kullanımı araştırıldı. Bu amaçla, çeşitli boyutlarda sonradan YG eklenen ve interpolasyon uygulanan görüntülerden ve YG içermeyen görüntülerden çeşitli tekstür özellikleri elde edildi. Polipleri kolon arka planından ayırt etmek için, uygulanan en yakın komşular, bilineer ve bikübik interpolasyon yöntemlerinin, tekstür özellikleri ve sınıflandırma performansı açısından herhangi bir farklılığa neden olup olmadığı test edildi. İkinci çalışmada temel amaç, bilgi taşımayan çerçeveleri tespit etmede geleneksel makine öğrenmesi ve transfer öğrenme yaklaşımlarının performanslarının karşılaştırılmasıydı. Makine öğrenmesi bölümünde, gri seviye eş oluşum matrisi, gri seviye koşu uzunluğu matrisi, komşuluk gri ton farkı matrisi, odak ölçüm operatörleri ve basıklık, standart sapma ve çarpıklık olarak üç adet birinci derece istatistik kullanıldı. Sınıflandırma aşamasında rastgele orman, destek vektör makineleri ve karar ağacı yaklaşımları kullanılmıştır. Transfer öğrenme bölümünde derin sinir ağları olarak AlexNet, SqueezeNet, GoogleNet, ShuffleNet, ResNet-18, ResNet-50, NasNetMobile ve MobileNet tercih edildi. Son çalışma, bilgi taşıyan çerçevelerde Crohn's, ülseratif kolit, kanser ve polip gibi kolon anormalliklerinin saptanmasını içermiştir. Bu çalışmanın amacı, öncelikle sağlıklı çerçeveleri hastalıklılardan ayırmak ve hem geleneksel makine öğrenmesi hem de transfer öğrenme yaklaşımlarını kullanarak hastalık türlerini belirlemekti. İkinci çalışmada kullanılanlarla aynı tekstür özellikleri, sınıflandırma yaklaşımları ve transfer öğrenme yöntemleri kullanılmıştır.Master Thesis Bilgisayar Ağlarında Anormal Durum Tespiti Yapan Öğrenme Yöntemlerinin Geliştirilmesi(Abdullah Gül Üniversitesi, 2018) MUKHANDI, HABIBU SHOMARI; Mukhandi, Habibu Shomari; Aydın, Zafer; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; MUKHANDI, HABIBU SHOMARI; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiMakine öğrenmesi, verilerdeki bilginin bir bilgisayar ya da makina tarafından otomatik olarak öğrenilmesi ve karşılaşılan yeni durumlarda anlamlı bilgi ya da davranışların üretilmesini amaçlar. Bir çok uygulama alanı bulunan makine öğrenmesi daha önce hiç karşılaşılmamış olan sıradışı durumların tespit edilmesi için de kullanılmaktadır. Bilgisayar ağlarındaki siber saldırılar, kredi kartı dolandırıcılığı ve internet sitelerinin linklerine yapılan çok sayıda sahte tıklamalar dünya genelinde ekonomileri ciddi oranda zarara uğratabilecek niteliktedir. Bu tezde üç farklı anormal durum tespiti problemi üzerinde çalışılmıştır: bilgisayar ağlarında saldırı tespiti, kredi kartı dolandırıcılığı tespiti ve internet sitelerdeki linklere sahte tıklama tespiti. Anormal durum tespiti için geliştirilen ve optimize edilen modeller arasında rastgele orman, en yakın komşu, destek vektör makinası, logistic regresyon, karar ağacı, AdaBoost, çantalama ve yığınlama gibi sınıflandırma yöntemleri bulunmaktadır. Yöntemlerin hiper-parametreleri eğitim kümelerinde yapılan çapraz doğrulama deneyleri ile optimize edilmiştir. Bir sonraki aşamada optimum hiper-parametre konfigürasyonları kullanılarak eğitilen modeler ile test verilerinde tahmin sonuçları hesaplanmıştır. Bu deneyler neticesinde genel doğruluk oranı ve F-measure skorlarında yüksek başarı elde edilmiştir. Geliştirilen yöntemler arasında en başarılı sonuçlar topluluk modelleri ile elde edilmiştir.Master Thesis Bilgisayar Algoritmalarının GPU ile Hızlandırılması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Yalçın, Salih; Alkan, Gülay Yalçın; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 10. RektörlükTravelling Salesman Problem (TSP) is one of the significant problems in computer science which tries to find the shortest path for a salesman who needs to visit a set of cities and it involves in many computing problems such as networks, genome analysis, logistic etc. Using parallel executing paradigms, especially GPUs, is appealing in order to reduce the problem-solving time of TSP. One of the main issues in GPUs is to have limited GPU memory which would not be enough for the entire data. Therefore, transferring data from host device would reduce the performance in execution time. In this study, we present a methodology for compressing data to represent cities in the TSP so that we include more cities in GPU memory. We implement our methodology in Iterated Local Search (ILS) algorithm with 2-opt and show that our implementation presents 29% performance improvement compared to the state-of-the-art GPU implementation.Doctoral Thesis Biyoçipler için Mikro Biyomalzemelerin ve Hücrelerin Görüntü İşleme Yöntemleri ile Otomatik Olarak Sayılması ve Analizi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Çelebi, Fatma; İçöz, Kutay; 0000-0001-7472-8297; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiQuantification of tumor cells is essential for early cancer detection and progression tracking. Multiple techniques have been devised to detect tumor cells. In addition to conventional laboratory instruments, several biochip-based techniques have been devised for this purpose. Our biochip design incorporates micron-sized immunomagnetic beads and micropad arrays, necessitating automated detection and quantification not only of cells but also of the micropads and immunomagnetic beads. The primary function of the biochip is to simultaneously acquire target cells with distinct antigens. As a readout technique for the biochip, this study devised a digital image processing-based method for quantifying leukemia cells, immunomagnetic beads, and micropads. Images were acquired on the chip using bright-field microscopy with image objectives of 20X and 40X. Conventional image processing methods, machine learning methods, and deep learning methods were used to analyze the images. To quantify targets in the images captured by a bright-field microscope, color- and size-based object recognition and machine learning-based methods were first implemented. Secondly, color- and size-based object detection and object segmentation methods were implemented to detect structures in bright-field optical microscope images acquired from the biochip. Third, segmentation of the minimal residual disease (MRD) using deep learning. Implemented biochip images comprised of leukemic cells, immunomagnetic beads, and micropads. Moreover, mesenchymal stem cells (MSCs) are stem cells with the capacity for multilineage differentiation and self-renewal. Estimating the proportion of senescent cells is therefore essential for clinical applications of MSCs. In this study, a self-supervised learning (SSL)-based method for segmenting and quantifying the density of cellular senescence was implemented, which can perform well despite the small size of the labeled dataset.Master Thesis Biyoinformatik Alanı için Blokzincir Tabanlı Veri Paylaşım Platformu(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Adanur, Beyhan; Güngör, Burcu; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiSon zamanlarda, panomik çalışmalar -omik verileri ile diğer veri türlerini birleştirerek, yeni ve uygulanabilir biyobelirteçleri belirlemeye çalışmaktadır. Bu bağlamda omik verilerinin doğru analizi için veri paylaşımının yanı sıra veri gizliliği ve sahipliği sorunlarını çözen, etik yönleri dikkate alan güvenli platformların geliştirilmesine ihtiyaç vardır. Bugünlerde blokzincir teknolojisi, farklı bir perspektiften bu sorunlara yönelik yeni bir çözüm sunduğu için genomik alanında büyük ilgi görmektedir. Bu tezde, verimli genomik veri paylaşımını sağlamak, genomik veriler üzerinde istatistiksel analiz ve benzeri işlemleri yapmak için blokzinciri, homomorfik şifreleme ve intel yazılım koruması uzantısına (SGX) dayanan, GenShare adlı hibrit bir platform önermekteyiz. Önerilen model, homomorfik şifreleme ve SGX kullanarak güvenlik gizliliği sorunlarını çözerken, diğer sorunları Hyperledger Fabric ve Ethereum ağlarının bir kombinasyonunu kullanarak çözmektedir. Bu çalışmada, GenShare modelinin ilk aşaması olan Hyperledger Fabric ağ kurulumu yapılmış ve farklı sayıda iş yükü ile ağın performansı test edilmiştir. Performans değerlendirmelerimizin sonucunda, GenShare modelinin veri toplama ve paylaşma sürecini hızlandıracağı, ve kullanıcalar için verimli bir platform olacağı sonucuna varılmıştır.Master Thesis Biyomedikal Varlıklar Arasındaki İlişkilerin Biyomedikal Makaleler Aracılığıyla Keşfedilmesine Dair Bir Sistem Geliştirilmesi(2025) Altuner, Osman; Güngör, Burcu; Bakal, Mehmet Gökhan; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiGünümüz dünyasında dijitalleşme hızla yayılmaktadır. Bu yayılma, bir yandan hayatımızı kolaylaştırırken diğer yandan büyük miktarda dijital verinin analizi ve işlenmesi gibi yeni zorlukları da beraberinde getirmektedir. Bu durum özellikle akademik araştırmalar bağlamında belirgindir. Akademik araştırmalar, gelişmiş değerlendirme süreçlerine ihtiyaç duymaktadır. Bu bağlamda, hastalıklar üzerine yapılan araştırmaların etkili bir şekilde değerlendirilmesi gerektiği bilinmektedir. Bu çalışmada, hastalıklarla ilgili yayınlar metin analizi yöntemlerine tabi tutulmuş ve ardından verilerin önemli biyomedikal bağlantılarla ilişkilendirilmesini sağlayan bir ağ yapısına dönüştürülmüştür. Amaç, tedavi edici ve sebep verici gibi önemli bağlantılara sahip iki biyomedikal varlığın karmaşık ağ yapısını incelemektir. Bu durumda, manuel arama yöntemleriyle elde edilen varlık ikililerinin gerçek bağlantılar olduğu doğrulanmıştır. Bu çalışma, mevcut bilinen biyomedikal varlıkların bulunmasında sıklıkla zaman alan manuel arama sürecini başarıyla çözmüştür. Ayrıca, bu yöntem sayesinde birden fazla ikili bağlantı örüntüsü aracılığıyla bilinmeyen veya henüz keşfedilmemiş olası yeni ilişkilerin (tedavi edici, sebep verici vb.) keşfedilme potansiyeli bulunmaktadır. Sonuç olarak, çizge analizi, bilgi keşfi ve metin madenciliği gibi tekniklerin bir araya getirilmesi, biyomedikal araştırmalarda potansiyel olarak önemli yeni sonuçların keşfedilmesine yol açmaktadır.Doctoral Thesis Blokzincir Tabanlı Eşten-Eşe Enerji Ticareti Uygulamaları(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2023) Seven, Serkan; Alkan, Gülay Yalçın; 0000-0003-2611-720X; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiThis thesis explores the potential of innovative peer-to-peer (P2P) energy trading schemes for virtual power plants (VPPs) using blockchain technologies, smart contracts, and decentralized finance (DeFi) instruments. Traditional centralized approaches have limitations in terms of transparency and security, which can hinder the successful implementation and operation of VPPs and P2P energy trading systems. The dissertation begins by reviewing the current state of energy sources within the global energy landscape. Understanding the existing landscape provides valuable insights into the potential benefits and challenges of implementing P2P energy trading within VPPs. The focus of the dissertation is to develop and analyze innovative P2P energy trading schemes for VPPs that integrate blockchain technologies and facilities to enhance transparency, security, and automation of energy transactions. Furthermore, DeFi instruments, specifically decentralized exchange (DEX), are used as a novel approach instead of auction methods to determine P2P energy buying and selling prices. Along with blockchain technologies, optimization is used to maximize the economic benefits of peers. The sequential decision problem of the trading schemes is solved with mixed integer linear programming (MILP). In addition, machine/deep learning models are utilized to overcome the drawbacks of conventional mathematical programming like MILP. These models can accelerate the decision-making processes by learning from the optimization results obtained. Overall, frameworks for the successful integration of P2P energy trading within and among VPPs are developed to validate the effectiveness and feasibility of the proposed P2P energy trading schemes through case studies and simulations using realistic data sets and blockchain platforms.Master Thesis Çalışan Yıpranması Tahmini ve Film Tavsiyesi için Öneri Sistemi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Özdemir, Fatma; Güngör, Vehbi Çağrı; Coşkun, Mustafa; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityBu tezde Makine Öğrenimi Topluluğunda ortaya atılan iki probleme odaklanıyoruz: tavsiye sistemi ve çalışanların yıpranma sorunu. Tavsiye sistemi, kullanıcıların bir ürün satın alırken belirli bir öğeyi tercih edip etmeyeceğini tahmin eden bir bilgi filtreleme sistemidir. Tavsiye sistemleri tahmin etmek için kullanıcı / öğe bilgilerini kullanır. Bu sistemler, özellikle işbirlikçi filtreleme tabanlı sistemler, E-ticarette yaygın olarak kullanılmaktadır. Bu çalışmada, ortak filtreleme ve kullanıcıların / öğelerin yan bilgilerini birleştiren karma bir model öneriyoruz. Önerilen modelde, ilişkili komşuları bulmak ve onları kümelemek için kullanıcıların / öğelerin yan bilgileri kullanılır. Daha sonra, bu kümelere ortak filtreleme yöntemleri uygulanır. Önerilen modelin performansını değerlendirmek için matris çarpanlara ayırma ve yeniden başlatma ile rastgele yürüme uygulanır. Önerilen yaklaşım MovieLens verileri üzerinde sistematik olarak değerlendirilir. Deneysel sonuçlar, kullanıcının / öğenin yan bilgisini kullanan önerilen modelin geleneksel ortak filtreleme yöntemlerinin performansını önemli ölçüde geliştirdiğini göstermektedir. Tezin ikinci bölümünde, hangi kişilerin şu anda çalıştıkları bir şirketten ayrılacağını / devam edeceğini tahmin etmeye çalışan, çalışan yıpranması tahmini sorununu ele almaya çalışıyoruz. Günümüzde şirketler için çalışanların işlerini bırakıp bırakmayacaklarını tahmin etmeleri çok önemlidir. En iyi performans gösteren çalışanların işi bırakması, kuruluşlarda finansal veya kurumsal bilgi kaybına neden olabilir. Bu tür kayıplardan kaçınmak için şirketler, çalışanların yıpranmasını tahmin etmelidir. Bununla birlikte, şirketlerin İK departmanları bu tür tahminleri yapacak kadar gelişmiş değildir. Bu amaçla şirketler, çalışanların yıpranmasını zamanında ve doğru bir şekilde tahmin etmek için veri madenciliği yöntemleri kullanmaktadır. Bu çalışmada, Doğrusal diskriminant analizi (LDA), Naive Bayes, Bagging, AdaBoost, Lojistik Regresyon, Destek Vektör Makinesi (SVM), Rastgele Orman, J48, LogitBoost, Çok Katmanlı Algılayıcı (MLP), K-En Yakın Komşular (KNN), XGBoost, Graph Convolutional Networks, iki özel şirket veri kümesinde (IBM ve Adesso İnsan Kaynakları veri kümelerine) çalışanların yıpranmasını tahmin etmek için uygulanmıştır. Mevcut çalışmalardan farklı olarak, bulgularımızı sistematik olarak F-ölçü, Eğri Altında Alan, doğruluk, duyarlılık ve özgüllük gibi çeşitli sınıflandırma metrikleri ile değerlendiriyoruz. Performans sonuçları, LogitBoost ve Lojistik Regresyon algoritmaları gibi veri madenciliği yöntemlerinin çalışanların yıpranmasını tahmin etmede çok yararlı olabileceğini göstermektedir.Doctoral Thesis Derin Öğrenme Tabanlı Kompozit Malzemelerin Ultrasonik Tomografi Görüntülerinden Kusurların Tespiti ve Sınıflandırılması(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Gülşen, Abdulkadir; Güngör, Burcu; Kolukısa, Burak; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiThis thesis introduces novel methodologies for enhancing defect classification and characterization in advanced composite materials by leveraging state-of-the-art machine learning (ML), deep learning (DL), and federated learning (FL) techniques within ultrasonic and acoustic emission (AE) inspection environments. First, a new ultrasonic dataset (UNDT), comprising 1,150 images from 60 distinct composite materials, is introduced. Applying transfer learning methods to both the UNDT and a publicly available dataset demonstrates the efficacy of advanced neural architectures—such as DenseNet121 and VGG19—achieving accuracy rates up to 98.8% and 98.6%, respectively. Next, the scope is extended to AE-based health monitoring by introducing an ensemble feature selection methodology to identify features strongly correlated with damage modes. By selecting amplitude and peak frequency for labeling and subsequently applying unsupervised clustering, the analysis confirms that both traditional AE features (e.g., counts and energy) and less commonly employed features (e.g., partial powers) correlate with distinct defect types. Finally, a novel FL framework is introduced to address the scarcity of publicly available, real-world ultrasonic datasets. This decentralized approach preserves data privacy while maintaining performance levels comparable to centralized methods, ensuring scalability and confidentiality in diverse data environments. Overall, these contributions significantly advance the field of NDT, offering robust defect classification and characterization. In doing so, the findings not only improve the accuracy and reliability of material integrity assessments but also lay a durable foundation for more secure, collaborative, and efficient NDT systems.Doctoral Thesis Derin Öğrenme Yaklaşımlarıyla Küçük Hücreli Dışı Akciğer Kanserinde Tümör Karakterizasyonu(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2021) Bıçakcı, Mustafa; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityKüçük Hücreli Dışı Akciğer Kanseri (KHDAK) akciğer kanserlerinin büyük çoğunluğunu oluşturur ve adenokarsinom (ADC) ve skuamöz hücreli karsinom (SqCC) olmak üzere iki önemli alt tipi vardır. Genel olarak, bu iki alt tip mikroskobik olarak belirlenen morfolojik kriterler dikkate alınarak birbirinden ayrılır. Ancak, kötü morfoloji bunu oldukça zorlaştırır. Alt tipe özel tedavi yöntemleri için bu tür çalışmalar önemlidir. Bu tezde, pozitron emisyon tomografi (PET) görüntüleri kullanılarak KHDAK'nin alt tiplerinin sınıflandırılması üzerinde derin öğrenme (DÖ) yöntemleri incelenmiştir. İlk çalışmada, DÖ yöntemlerinin temelini oluşturan yapay sinir ağları (YSA) kullanılarak %73 doğru sınıflandırma başarısı elde edilmiştir. İkinci çalışmada, PET görüntülerinden alınan bölütlenmiş tümör kesitleri kullanılarak birkaç DÖ modeli incelenmiştir. Sonuçta, %95 F skoru ile VGG16 ve VGG19 en başarılı modeller olmuştur. Bu çalışmanın sonunda kesit bazlı çalışmalar bırakılarak hasta bazlı çalışmalara geçilmiştir. Üçüncü çalışmada, hasta bazlı dilimlerin birleştirilmesiyle oluşturulan üç boyutlu (3B) verilerin kullanımı yeterli başarıyı sağlamamıştır. Dördüncü çalışmada, PET görüntülerinin doğrudan kullanıldığı, tümör kısımlarının kırpılarak kullanıldığı ve bölütlenmiş tümör parçalarının kullanıldığı üç farklı deney yapılmıştır. Bu çalışma, peritümoral alanların sınıflandırmada olumlu etkisini ortaya koymuş ve VGG19 %74 F skoru değerine ulaşmıştır. Beşinci çalışmada, transfer öğrenme ve hassas ayar çalışmaları başarısızdı. CNN ve ResNet tabanlı sığ ağları içeren son çalışma %71 F skoru ile umut verici olmuştur.Master Thesis Derin Öğrenme Yöntemleri Kullanarak Dermatoskopik Görüntülerden Otomatik Cilt Kanseri Tespiti ve Sınıflandırılması(Abdullah Gül Üniversitesi / Fen Bilimleri Enstitüsü, 2023) Kalaycı, Serdar; Yılmaz, Bülent; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityEarly detection of skin cancer is crucial for successful treatment and improved patient outcomes. The most prevalent form of cancer is skin cancer and if left undetected, it can spread and become more difficult to treat. A dangerous and frequently fatal type of skin cancer is melanoma. Regular skin examinations and self-examinations can help identify suspicious moles or lesions, which can then be evaluated by a dermatologist. In addition, advances in technology and artificial intelligence have enabled the development of tools for automated skin cancer screening, providing a convenient and efficient means of early detection. This can lead to more efficient diagnosis, reduced healthcare costs and improved patient care. By evaluating skin lesions from images, deep learning techniques have shown considerable potential in increasing the precision of melanoma detection. By using large datasets and complex neural networks, deep learning algorithms can effectively distinguish between benign and malignant skin lesions with high accuracy. Ensemble of CNN models helps improve the performance and reliability of the classification task. By combining the predictions of multiple CNN models lead to more accurate and robust predictions. In this thesis, for melanoma classification problem, many different data augmentations techniques applied and different convolutional neural networks architectures evaluated, applied vignetting effect filter and hair noise in accordance with the dataset and results of ensemble of the best CNN models are promising. This thesis attempts to produce a reliable model for the classification of melanoma by conducting experiments on two combined publically accessible data sets, ISIC 2019 and ISIC 2020. On the testing sets in our studies, the proposed solution attained 95.75% AUC.Doctoral Thesis EEG Sinyallerinden Disfaji Hastalığının Karakteristiklerinin Belirlenmesi ve Analizi(2025) Aslan, Sevgi Gökçe; Yılmaz, Bülent; 01. Abdullah Gül UniversityDisfaji, genellikle nörolojik hastalıklarla ilişkilendirilen ve özellikle yaşlı bireylerde yaşam kalitesini olumsuz yönde etkileyen bir yutma bozukluğudur. Bu çalışma, EEG verileri kullanılarak yutma ve yutmayı hayal etme süreçlerinin nörofizyolojik analizini yapmayı ve bu verilerin disfaji rehabilitasyonunda nasıl kullanılabileceğini araştırmaktadır. Otuz adet sağ elini kullanan birey üzerinde gerçekleştirilen deneylerde, doğal yutma, indüklenmiş tükürük yutma, indüklenmiş su yutma ve indüklenmiş dil dışarı çıkarma gibi farklı deneysel paradigmalar kullanılmıştır. Verilerin ön işlenmesinde Bağımsız Bileşen Analizi (ICA), Empirik Mod Ayrıştırma (EMD), bant geçiren filtreleme ve Ortak Uzamsal Desen (CSP) analizi gibi teknikler uygulanmıştır. Bu ön işleme yöntemleri, EEG verilerindeki gürültüyü azaltarak daha doğru bir analiz sağlamak amacıyla kullanılmıştır. Geleneksel makine öğrenmesi teknikleri ve derin öğrenme yöntemleriyle yapılan sınıflandırma görevlerinde, dinlenme ve hayal etme evreleri arasındaki farklar belirgin bir şekilde ayrılmıştır. Random Forest, AdaBoost ve Bagging gibi topluluk tabanlı algoritmaların yanı sıra, derin öğrenme yöntemlerinden Konvolüsyonel Sinir Ağları (CNN) da uygulanmıştır. Ayrıca, çok ölçekli mekânsal dikkat ağı (MS-SAN) modeli, özellikle delta ve teta frekans bantlarında hareketi hayal etme ile dinlenme durumları arasındaki nörofizyolojik farkları yüksek doğrulukla ayırt etmiştir. Sonuçlar, hareketi hayal etme ve dinlenme evrelerinin EEG verileriyle tespit edilmesinin disfaji tedavisinde ve motor rehabilitasyon uygulamalarında büyük bir potansiyel taşıdığını göstermektedir. Bu çalışma, EEG tabanlı beyin-bilgisayar arayüzleri (BBA) teknolojilerinin, makine öğrenimi ve derin öğrenme yöntemlerinin disfaji rehabilitasyonundaki potansiyelini vurgulamakta ve bu alandaki araştırmaların klinik uygulamalar açısından önemini ortaya koymaktadır. Anahtar kelimeler: Elektroensefalografi, Makine Öğrenmesi, Derin Öğrenme, BBA, YutkunmaMaster Thesis Elektrik Dağıtım Şirketleri Perspektifinden Blockchain Temelli Enerji Uygulamaları(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Yağmur, Ahmet; Tonyalı, Samet; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityThis thesis discusses blockchain-based energy applications from the distribution system operator (DSO) perspective. Blockchain has a potential impact on emerging actors, such as electric vehicles (EVs), charging facility units (CFUs), Distributed Energy Resources (DERs) and microgrids of the electricity grid. Although, blockchain offers magnificent, decentralized solutions, owing to the reality of the existing grid structure, the central management of DSOs still plays a significant, non-negligible role. Numerous studies of proposed blockchain-based EV systems have investigated the energy costs of EVs, fast and efficient charging, privacy and security, peer-to-peer energy trading, sharing economy, selection of appropriate location for CFUs, and scheduling. Additionally, blockchain in DERs, microgrids and energy market investigated in literature. However, cooperation with DSO organizations has not been adequately addressed. Blockchain-based solutions mainly suggest an entirely distributed and decentralized approach for energy trading. However, converting the entire power system infrastructure is considerably expensive. Building a thoroughly decentralized electricity network is nearly impossible in a short time, particularly at the national grid level. In this regard, the applicability of the solutions is as significant as their appropriateness, especially from the DSO perspective, and must be examined closely. The blockchain applicability of the essential DSO services such as SCADA and AMI are analyzed in this study. Time series analysis applied to forecast future peak load of the grid in a pilot region. Reducing the peak load by using BC based demand side management mechanism scenario evaluated and total saving of grid investment is analyzed. We searched and analyzed DSO-based requirements for potential blockchain applications in the energy sector.Doctoral Thesis Endüstriyel Ortamlarda Enerji Hasatlayan Çoğul Ortam Kablosuz Algılayıcı Ağları(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2020) Tekin, Nazlı; Güngör, Vehbi Çağrı; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversitySert kanal koşullarına sahip olan Endüstriyel Kablosuz Algılayıcı Ağ'larda (EKAA), enerji verimli ve güvenilir kablosuz iletişim sağlamak büyük önem taşımaktadır. Ağ güvenirliğini sağlarken aynı zamanda ağın ömrünü uzatmak da zor bir problemdir. Bu çalışmanın amacı, EKAA'ların ömrünün eniyilenmesidir. Bunu yaparken, endüstriyel ortamlar için uygun olan iç mekan güneş, termal ve titreşime dayalı Enerji Hasatlama (EH) yöntemleri tanımlanmış ve bunların ağ ömrüne katkıları araştırılmıştır. Uygulama güvenilirliğini ve EH yöntemlerini birlikte değerlendirerek, ağ ömrünü eniyilemek için yeni bir Karma Tamsayılı Programlama (KTP) modeli formüle edilmiştir. Ayrıca, Kablosuz Çoğul Ortam Algılayıcı Ağ'larında (KÇOAA) iletişim, büyük veri boyutu nedeniyle fazladan enerji tüketimine sebep olur. Bu nedenle, büyük veri boyutunu iletimden önce azaltmak önemli hale gelir.Bu amaçla, iletişim ve enerji dağıtım hesaplamalarını dikkate alırken, sıkıştırıcı algılama ve görüntü sıkıştırma gibi veri boyutu küçültme yöntemlerinin endüstriyel ağ ömrü üzerindeki etkisi değerlendirilir. Öte yandan, özellikle çok sayıda algılayıcılar bulunduran ağlar için KTP modelini uygun bir zamanda çözmek bir hayli zordur. KTP'nin zaman karmaşıklığı sorununun üstesinden gelmek için sezgisel tabanlı yöntemler geliştirilmiştir.Master Thesis Enhancing Breast Cancer Detection With a Hybrid Machine Learning Approach(2024) Etcil, Mustafa; Güngör, Burcu; Güngör, V. Cagri; 01. Abdullah Gül University; 02. 04. Bilgisayar Mühendisliği; 02. Mühendislik FakültesiDünya Sağlık Örgütü (WHO) tarafından belirlendiği üzere, göğüs kanseri, son beş yılda 7.8 milyon yeni vakayla en yaygın kanser türlerinden biri olarak ön plana çıkmaktadır. Bu çarpıcı istatistik, gelişmiş tanı yöntemlerine olan acil ihtiyacı vurgulamaktadır. Bu bağlamda, mevcut çalışma, göğüs kanseri tespiti için lojistik regresyon modeli eğitim sürecini iyileştirmek amacıyla klonal seçim algoritması (CSA) ile parçacık sürü optimizasyonunu (PSO) yenilikçi bir şekilde birleştiren CSA-PSO-LR sınıflandırıcısını önermektedir. Bu araştırma, geniş çapta tanınan iki veri seti olan Wisconsin Diagnostik Göğüs Kanseri (WDBC) ve Wisconsin Göğüs Kanseri Veritabanı (WBCD) kullanılarak, performans değerlendirmesi için 10 kat çapraz doğrulama ve Bayes hiperparametre optimizasyonunu içeren katı bir değerlendirme protokolü uygulamaktadır. Ayrıca, çalışma, model eğitim süresini önemli ölçüde kısaltmayı amaçlayan CPU paralelleştirme stratejilerini tanıtmaktadır. Karar ağaçları, aşırı gradyan artırma, en yakın komşular, lojistik regresyon, rastgele ormanlar ve destek vektör makineleri gibi makine öğrenimi algoritmalarına karşı yapılan karşılaştırmalı analizler, CSA-PSO-LR sınıflandırıcısının tespit doğruluğu ve F1-ölçütü açısından üstün performans sergilediğini göstermektedir. Bu araştırma, göğüs kanserinin erken tespitine yönelik yenilikçi bir yaklaşım sunarak, daha etkili tedavi planlarının kolaylaştırılmasına ve hastaların hayatta kalma beklentilerinin artırılmasına katkıda bulunmaktadır.Master Thesis Erken Orman Yangını Tespiti için Otonom Heterojen Çoklu Robot Sistemi Tasarımı(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Serin, Ömer Faruk; Güler, Samet; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiThe usage of autonomous multi-robot systems for human life-endangering applications is emerging. Early wildfire detection and firefighting are two example applications. In this study, a heterogenous multi-robot system is proposed for both fire detection and response. The system employs an unmanned aerial vehicle for beyond-visual line-of-sight observations and an unmanned ground robot for fire extinguisher carrying. The proposed method uses ultrawideband (UWB) communication and ranging modules for the relative localization of robots during their movements. A specially trained YOLOv7 object detection model is used for robustly detecting forest fires and smoke while a modified version of the Vector Field Histogram Plus (VFH+) algorithm on the ground robot is used for obstacle avoidance while navigating. The structural design of the system requires no odometry or mapping of the environment hence improving the applicability of the system while decreasing system complexity. Additionally, the proposed UWB localization system is shown to be robust in long-lasting operations unlike many odometry-based approaches which accumulate errors with time. Moreover, localization of the UAV is realized with only three independent UWB-based range measurements and the altitude information of the UAV. The system is tested both in a realistic simulation environment and in real experimental setups with multiple runs. Results showed that the proposed system is improvable for better detection and practical to implement even in a dense forest environment without the need for GPS sensors, odometer data, or magnetometer.Master Thesis Esnek Kağıt Tabanlı Kapasitif Sensör Kullanarak Solunum İzleme(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Solak, İrfan; İçöz, Kutay; Hah, Dooyoung; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversityRespiration is an action known to be essential and crucial for life. Unfortunately, in some cases such as illnesses and accidents various respiratory problems can be experienced. It might be difficult to maintain normal respiration for the people who have respiratory diseases. It is known that respiration monitoring of people who have respiratory problems, albeit for different reasons, is important in terms of their treatment and maintaining their life quality. Current respiration monitoring systems are expensive and bulky. Many of these systems are only available at hospitals or in laboratories. Low-cost, easy to use and portable respiratory monitoring devices are needed. Having these motivations, we aimed to monitor respiration by designing and producing a paper-based sensor that is easy to manufacture, low-cost, and highly responsive. The sensor, which is the subject of this thesis project, has potential to be used for different purposes such as measuring the humidity in the environment. In this project, we focused on designing a system for people who have respiratory problems by providing respiration monitoring data. In addition, according to the data obtained, we are able to analyze the health status of the users. Therefore, this sensor can be used both for the detection of respiration diseases and monitor the status of the patients. In this way, respiration related unhealthy situation can be detected and treated immediately.Master Thesis Farklı Modülasyon Teknikleri ile Su Altı İletişimde Performans Analizi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2017) Bahçebaşı, Akif; Güngör, Vehbi Çağrı; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül UniversitySualtı Kablosuz Algılayıcı Ağlarının özellikle veri toplama, sınır güvenliği, kirlilik izleme, sahil araştırma ve taktiksel takip gibi bir çok oşinografi uygulaması son yıllarda pek çok araştırmacının ilgisini çekmeye başlamıştır. Pek çok su altı uygulamasında, su altı sensor düğümlerinin yanında, insansız su altı araçları da su altı kaynaklarının keşfi ve veri toplama gibi işbirliği gerektiren görevlerde yaygın olarak kullanılmaktadır. Su altı ağlarda kurulan bağlantı akustik iletişime dayanmasına rağmen, akustik kanal özellikleri çok ani değişiklikler gösterir ki, bu nedenle kurulan bağlantı kalitesinde, çevresel faktörler ve düğümlerin konumları önemli rol oynar. Bu sebeple su altı ağlarda güvenilir bir iletişimin kurulması oldukça zordur. Bütün bunlardan başka, sinyal kayıpları ve yeniden iletimler enerji kaynaklarının gereksiz sarfiyatına dolaysıyla ağ ömrünün kısalmasına neden olur. Bu tez çalışmasında su altı akustik ağlarda en çok bilinen modülasyon teknikleri kullanılarak farklı derinlik, mesafe ve Bit hata oranına sahip su altı ortamları analiz edilmiştir. Sonuç olarak veri iletimi için gerekli minimum enerji miktarı bulunmuş ve modülasyon teknikleri uygun şekilde kıyaslanmıştır. Simülasyon çalışmalarımızda kanıtlandığı üzere 32-PSK ve 16-QAM teknikleri minimum (optimum) enerji tüketim oranlarına ulaşmıştır. Bundan dolayı ağ tasarımcıları 32-PSK ve 16-QAM modülasyon tekniklerini kullanarak su altı ağların ömrünü artırabilirler.
