EEG Sinyallerinden Disfaji Hastalığının Karakteristiklerinin Belirlenmesi ve Analizi
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Disfaji, genellikle nörolojik hastalıklarla ilişkilendirilen ve özellikle yaşlı bireylerde yaşam kalitesini olumsuz yönde etkileyen bir yutma bozukluğudur. Bu çalışma, EEG verileri kullanılarak yutma ve yutmayı hayal etme süreçlerinin nörofizyolojik analizini yapmayı ve bu verilerin disfaji rehabilitasyonunda nasıl kullanılabileceğini araştırmaktadır. Otuz adet sağ elini kullanan birey üzerinde gerçekleştirilen deneylerde, doğal yutma, indüklenmiş tükürük yutma, indüklenmiş su yutma ve indüklenmiş dil dışarı çıkarma gibi farklı deneysel paradigmalar kullanılmıştır. Verilerin ön işlenmesinde Bağımsız Bileşen Analizi (ICA), Empirik Mod Ayrıştırma (EMD), bant geçiren filtreleme ve Ortak Uzamsal Desen (CSP) analizi gibi teknikler uygulanmıştır. Bu ön işleme yöntemleri, EEG verilerindeki gürültüyü azaltarak daha doğru bir analiz sağlamak amacıyla kullanılmıştır. Geleneksel makine öğrenmesi teknikleri ve derin öğrenme yöntemleriyle yapılan sınıflandırma görevlerinde, dinlenme ve hayal etme evreleri arasındaki farklar belirgin bir şekilde ayrılmıştır. Random Forest, AdaBoost ve Bagging gibi topluluk tabanlı algoritmaların yanı sıra, derin öğrenme yöntemlerinden Konvolüsyonel Sinir Ağları (CNN) da uygulanmıştır. Ayrıca, çok ölçekli mekânsal dikkat ağı (MS-SAN) modeli, özellikle delta ve teta frekans bantlarında hareketi hayal etme ile dinlenme durumları arasındaki nörofizyolojik farkları yüksek doğrulukla ayırt etmiştir. Sonuçlar, hareketi hayal etme ve dinlenme evrelerinin EEG verileriyle tespit edilmesinin disfaji tedavisinde ve motor rehabilitasyon uygulamalarında büyük bir potansiyel taşıdığını göstermektedir. Bu çalışma, EEG tabanlı beyin-bilgisayar arayüzleri (BBA) teknolojilerinin, makine öğrenimi ve derin öğrenme yöntemlerinin disfaji rehabilitasyonundaki potansiyelini vurgulamakta ve bu alandaki araştırmaların klinik uygulamalar açısından önemini ortaya koymaktadır. Anahtar kelimeler: Elektroensefalografi, Makine Öğrenmesi, Derin Öğrenme, BBA, Yutkunma
Dysphagia is a swallowing disorder that is usually associated with neurological diseases and negatively affects the quality of life, especially in elderly individuals. This study investigates the neurophysiological analysis of swallowing and motor imagery processes using EEG data and how this data can be used in dysphagia rehabilitation. Different experimental paradigms, such as natural swallowing, induced saliva swallowing, induced water swallowing, and induced tongue protrusion, were used in the experiments conducted on 30 right-handed individuals. Techniques such as Independent Component Analysis (ICA), Empirical Mode Decomposition (EMD), band-pass filtering, and Common Spatial Pattern (CSP) analysis were applied in the preprocessing of the data. These preprocessing methods provided a more accurate analysis by reducing the noise in the EEG data. The differences between the resting and imagery stages were clearly separated in the classification tasks performed with traditional machine learning techniques and deep learning methods. In addition to ensemble-based algorithms such as Random Forest, AdaBoost, and Bagging, Convolutional Neural Networks (CNN) from deep learning methods were also applied. In addition, the multi-scale spatial attention network (MS-SAN) model distinguished neurophysiological differences between motor imagery and resting states, especially in delta and theta frequency bands, with high accuracy. The results show that detecting motor imagery and resting stages with EEG data has great potential in dysphagia treatment and motor rehabilitation applications. This study highlights the potential of EEG-based brain-computer interface (BCI) technologies, machine learning, and deep learning methods in dysphagia rehabilitation. It reveals the importance of research in this area for clinical applications. Keywords: Electroencephalography, Machine Learning, Deep Learning, BCI, Swallowing
Dysphagia is a swallowing disorder that is usually associated with neurological diseases and negatively affects the quality of life, especially in elderly individuals. This study investigates the neurophysiological analysis of swallowing and motor imagery processes using EEG data and how this data can be used in dysphagia rehabilitation. Different experimental paradigms, such as natural swallowing, induced saliva swallowing, induced water swallowing, and induced tongue protrusion, were used in the experiments conducted on 30 right-handed individuals. Techniques such as Independent Component Analysis (ICA), Empirical Mode Decomposition (EMD), band-pass filtering, and Common Spatial Pattern (CSP) analysis were applied in the preprocessing of the data. These preprocessing methods provided a more accurate analysis by reducing the noise in the EEG data. The differences between the resting and imagery stages were clearly separated in the classification tasks performed with traditional machine learning techniques and deep learning methods. In addition to ensemble-based algorithms such as Random Forest, AdaBoost, and Bagging, Convolutional Neural Networks (CNN) from deep learning methods were also applied. In addition, the multi-scale spatial attention network (MS-SAN) model distinguished neurophysiological differences between motor imagery and resting states, especially in delta and theta frequency bands, with high accuracy. The results show that detecting motor imagery and resting stages with EEG data has great potential in dysphagia treatment and motor rehabilitation applications. This study highlights the potential of EEG-based brain-computer interface (BCI) technologies, machine learning, and deep learning methods in dysphagia rehabilitation. It reveals the importance of research in this area for clinical applications. Keywords: Electroencephalography, Machine Learning, Deep Learning, BCI, Swallowing
Description
Keywords
Elektrik Ve Elektronik Mühendisliği, Electrical And Electronics Engineering
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
134
Google Scholar™
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

10
REDUCED INEQUALITIES
