1. Home
  2. Browse by Author

Browsing by Author "Kuzudisli, Cihan"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    conferenceobject.listelement.badge
    A comparative study on psychiatric disorders: Identification of shared pathways and common agents
    (Institute of Electrical and Electronics Engineers Inc., 2022) Kuzudisli, Cihan; Bakir-Gungor, Burcu; 0000-0002-2272-6270; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Bakir-Gungor, Burcu
    Distinct but closely related diseases generally present shared symptoms, which address possible overlaps among their pathogenic mechanisms. Identification of significantly impacted shared pathways and other common agents are expected to elucidate etiology of these disorders and to help design better intervention strategies. In this research effort, we studied six psychiatric disorders including schizophrenia (SCZ), anorexia (AN), bipolar disorder (BD), depressive disorder (DD), autism (AU) and attention deficit hyperactivity disorder (ADHD). Our methodology can be classified into the following two parts: In Part I, common susceptibility genes; and in Part II, genome-wide association studies (GWAS) data were used to find enriched pathways of psychiatric disorders. 59 KEGG pathways were commonly identified in both parts. 31 of these pathways are disease pathways. Pathways related to cancer and infectious diseases were predominant compared to others. Most of the acquired pathways were in accordance with previous studies in literature. A combination of susceptibility genes and GWAS data is an effective approach to identify significantly impacted pathways in multifactorial diseases. In this respect, shared modules were determined after applying hierarchical clustering of the enriched pathways. These identified modules may tell us the association of psychiatric disorders with the enriched pathways. Taken all together, common pathways and shared modules are expected to highlight the causative factors and important mechanisms behind complex psychiatric diseases, leading to effective drug discovery.
  • Loading...
    Thumbnail Image
    conferenceobject.listelement.badge
    Effect of Recursive Cluster Elimination with Different Clustering Algorithms Applied to Gene Expression Data
    (Institute of Electrical and Electronics Engineers Inc., 2023) Kuzudisli, Cihan; Bakir-Gungor, Burcu; Qaqish, Bahjat F.; Yousef, Malik.; 0000-0002-2272-6270; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Bakir-Gungor, Burcu
    Feature selection (FS) is an effective tool in dealing with high dimensionality and reducing computational cost. Support Vector Machines – Recursive Cluster Elimination (SVM-RCE) is one of several algorithms that have been developed for FS in high dimensional data. SVM-RCE involves a clustering step which originally is k-means. Using various performance metrics, three alternative algorithms are evaluated in this context; k-medoids, Hierarchical Clustering (HC), and Gaussian Mixture Model (GMM). Comparisons will be carried out on five publicly available gene expression datasets. The results show that k-means in SVM-RCE obtains higher performance than other tested algorithms in terms of classification performance. Additionally, HC shows a similar performance to k-means. Our findings show superiority of using k-means. This study can contribute to the development of SVMRCE with different variations, leading to decrease in the number of selected genes, and an increase in prediction performance.
  • Loading...
    Thumbnail Image
    conferenceobject.listelement.badge
    Identification of Shared Pathways Among Immune Related Diseases Utilizing Active Subnetworks
    (IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2020) Eryilmaz, Mahmut Kaan; Kuzudisli, Cihan; Gungor, Burcu Bakir; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
    Different, but related diseases often contain shared symptoms indicating the presence of possible overlaps in underlying pathogenic mechanisms. The identification of the shared pathways and related factors across these diseases helps to better understand the causes of these diseases, to prevent and treat these diseases. In this study, using immune-related diseases, we proposed a new method on how to compare the development mechanisms of related diseases based on biological pathways. Following the developments in genomic technologies, the genotyping gets cheaper and easier, and hence genome-wide association studies (GWAS) emerged. By this means, via studying big-sized case-control groups for a specific disease, potential genetic variations, single nucleotide polymorphisms (SNPs) could he identified. With the help of these studies, in which around a million of SNPs are scanned, the variations and genes that could have a role in specific disease development could be detected. In this study, via using available GWAS datasets and human protein-protein interaction network, and via detecting active subnetworks and affected pathways, seven immune related diseases are analyzed. Via investigating the similarities among the identified pathways for related diseases, we aim to define the underlying pathogenic mechanisms, and hence to contribute to the elucidation of disease development mechanisms and to the drug repositioning studies.