1. Home
  2. Browse by Author

Browsing by Author "Demir, Hilmi Volkan"

Filter results by typing the first few letters
Now showing 1 - 20 of 25
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    All-Surface Induction Heating With High Efficiency and Space Invariance Enabled by Arraying Squircle Coils in Square Lattice
    (IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USA, 2018) Kilic, Veli Tayfun; Unal, Emre; Yilmaz, Namik; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü;
    This paper reports an all-surface induction heating system that enables efficient heating at a constant speed all over the surface independent of the specific location on the surface. In the proposed induction system, squircle coils are placed tangentially in a two-dimensional square lattice as opposed to commonly used hexagonal packing. As a proof-of-concept demonstration, a simple model setup was constructed using a 3 x 3 coil array along with a steel plate to be inductively heated. To model surface heating, a set of six locations for the plate was designated considering symmetry points. For all of these cases, power dissipated by the system and the plate's transient heating were recorded. Independent from the specific plate position, almost equal heating speeds were measured for the similar levels of dissipated energies in the system. Using full three-dimensional electromagnetic solutions, the experimental results were also verified. The findings indicate that the proposed system is proved to enable energy efficient space-invariant heating in all-surface induction hobs.
  • Loading...
    Thumbnail Image
    Article
    Colloidal Quantum Dot Light-Emitting Diodes Employing Phosphorescent Small Organic Molecules as Efficient Exciton Harvesters
    (AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2014) Mutlugun, Evren; Guzelturk, Burak; Abiyasa, Agus Putu; Gao, Yuan; Sun, Xiao Wei; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü;
    Nonradiative energy transfer (NRET) is an alternative excitation mechanism in colloidal quantum dot (QD) based electroluminescent devices (QLEDs). Here, we develop hybrid highly spectrally pure QLEDs that facilitate energy transfer pumping via NRET from a phosphorescent small organic molecule-codoped charge transport layer to the adjacent QDs. A partially codoped exciton funnelling electron transport layer is proposed and optimized for enhanced QLED performance while exhibiting very high color purity of 99%. These energy transfer pumped hybrid QLEDs demonstrate a 6-fold enhancement factor in the external quantum efficiency over the conventional QLED structure, in which energy transfer pumping is intrinsically weak.
  • Loading...
    Thumbnail Image
    Article
    Color Enrichment Solids of Spectrally Pure Colloidal Quantum Wells for Wide Color Span in Displays
    (WILEY-V C H VERLAG GMBH, 2022) Erdem, Talha; Soran-Erdem, Zeliha; Isik, Furkan; Shabani, Farzan; Yazici, Ahmet Faruk; Mutlugun, Evren; Gaponik, Nikolai; Demir, Hilmi Volkan; 0000-0001-7607-9286; 0000-0003-2747-7856; 0000-0003-3905-376X; 0000-0003-3715-5594; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Erdem, Talha; Soran-Erdem, Zeliha; Yazıcı, Ahmet Faruk; Mutlugün, Evren
    Colloidal quantum wells (CQWs) are excellent candidates for lighting and display applications owing to their narrow emission linewidths (<30 nm). However, realizing their efficient and stable light-emitting solids remains a challenge. To address this problem, stable, efficient solids of CQWs incorporated into crystal matrices are shown. Green-emitting CdSe/CdS core/crown and red-emitting CdSe/CdS core/shell CQWs wrapped into these crystal solids are employed as proof-of-concept demonstrations of light-emitting diode (LED) integration targeting a wide color span in display backlighting. The quantum yield of the green- and red-emitting CQW-containing solids of sucrose reach approximate to 20% and approximate to 55%, respectively, while emission linewidths and peak wavelengths remain almost unaltered. Furthermore, sucrose matrix preserves approximate to 70% and approximate to 45% of the initial emission intensity of the green- and red-emitting CQWs after >60 h, respectively, which is approximate to 4x and approximate to 2x better than the drop-casted CQW films and reference (KCl) host. Color-converting LEDs of these green- and red-emitting CQWs in sucrose possess luminous efficiencies 122 and 189 lm W-elect(-1), respectively. With the liquid crystal display filters, this becomes 39 and 86 lm W-elect(-1), respectively, providing with a color gamut 25% broader than the National Television Standards Committee standard. These results prove that CQW solids enable efficient and stable color converters for display and lighting applications.
  • Loading...
    Thumbnail Image
    Article
    Deep-Red-Emitting Colloidal Quantum Well Light-Emitting Diodes Enabled through a Complex Design of Core/Crown/Double Shell Heterostructure
    (WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY, 2021) Shabani, Farzan; Dehghanpour Baruj, Hamed; Yurdakul, Iklim; Delikanli, Savas; Gheshlaghi, Negar; Isik, Furkan; Liu, Baiquan; Altintas, Yemliha; Canimkurbey, Betul; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, Yemliha
    Extending the emission peak wavelength of quasi-2D colloidal quantum wells has been an important quest to fully exploit the potential of these materials, which has not been possible due to the complications arising from the partial dissolution and recrystallization during growth to date. Here, the synthetic pathway of (CdSe/CdS)@(1-4 CdS/CdZnS) (core/crown)@(colloidal atomic layer deposition shell/hot injection shell) hetero-nanoplatelets (NPLs) using multiple techniques, which together enable highly efficient emission beyond 700 nm in the deep-red region, is proposed and demonstrated. Given the challenges of using conventional hot injection procedure, a method that allows to obtain sufficiently thick and passivated NPLs as the seeds is developed. Consequently, through the final hot injection shell coating, thick NPLs with superior optical properties including a high photoluminescence quantum yield of 88% are achieved. These NPLs emitting at 701 nm exhibit a full-width-at-half-maximum of 26 nm, enabled by the successfully maintained quasi-2D shape and minimum defects of the resulting heterostructure. The deep-red light-emitting diode (LED) device fabricated with these NPLs has shown to yield a high external quantum efficiency of 6.8% at 701 nm, which is on par with other types of LEDs in this spectral range.
  • Loading...
    Thumbnail Image
    Article
    Efficient generation of emissive many-body correlations in copper-doped colloidal quantum wells
    (Elsevier, 2022) Yu, Junhong; Sharma, Manoj; Li, Mingjie; Liu, Baiquan; Hernandez-Martinez, Pedro Ludwig; Delikanli, Savas; Sharma, Ashma; Altintas, Yemliha; Hettiarachchi, Chathuranga; Sum, Tze Chien; Demir, Hilmi Volkan; Dang, Cuong; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, Yemliha
    Colloidal quantum wells (CQWs) provide an appealing platform to achieve emissive many-body correlations for novel optoelectronic devices, given that they act as hosts for strong carrier Coulomb interactions and present suppressed Auger recombination. However, the demonstrated high-order excitonic emission in CQWs requires ultrafast pumping with high excitation levels and can only be spec-trally resolved at the single-particle level under cryogenic condi-tions. Here, through systematic investigation using static power -dependent emission spectroscopy and transient carrier dynamics, we show that Cu-doped CdSe CQWs exhibit continuous-wave -pumped high-order excitonic emission at room temperature with a large binding energy of X64 meV. We attribute this unique behavior to dopant excitons in which the ultralong lifetime and the highly localized wavefunction facilitate the formation of many-body corre-lations. The spectrally resolved high-order excitonic emission gener-ated at power levels compatible with solar irradiation and electrical injection might pave the way for novel solution-processed solid-state devices.
  • Loading...
    Thumbnail Image
    Article
    Electroluminescence Efficiency Enhancement in Quantum Dot Light-Emitting Diodes by Embedding a Silver Nanoisland Layer
    (WILEY-V C H VERLAG GMBH, POSTFACH 101161, 69451 WEINHEIM, GERMANY, 2015) Yang, Xuyong; Hernandez-Martinez, Pedro Ludwig; Dang, Cuong; Mutlugun, Evren; Zhang, Kang; Demir, Hilmi Volkan; Sun, Xiao Wei; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü;
    A colloidal quantum dot light-emitting diode (QLED) is reported with substantially enhanced electroluminescence by embedding a thin layer of Ag nanoislands into hole transport layer. The maximum external quantum efficiency (EQE) of 7.1% achieved in the present work is the highest efficiency value reported for green-emitting QLEDs with a similar structure, which corresponds to 46% enhancement compared with the reference device. The relevant mechanisms enabling the EQE enhancement are associated with the near-field enhancement via an effective coupling between excitons of the quantum dot emitters and localized surface plasmons around Ag nanoislands, which are found to lead to good agreement between the simulation results and the experimental data, providing us with a useful insight important for plasmonic QLEDs.
  • Loading...
    Thumbnail Image
    Article
    Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells
    (AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2019) Altintas, Yemliha; Gungor, Kivanc; Gao, Yuan; Sak, Mustafa; Quliyeva, Ulviyya; Bappi, Golam; Mutlugun, Evren; Sargent, Edward H.; Demir, Hilmi Volkan; 0000-0003-0396-6495; 0000-0003-1793-112X; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü
    As an attractive materials system for high- Record-low optical gain threshold in giant-shell COWs performance optoelectronics, colloidal nanoplatelets (NPLs) benefit from atomic-level precision in thickness, minimizing emission inhomogeneous broadening. Much progress has been made to enhance their photoluminescence quantum yield (PLQY) and photostability. However, to date, layer-by-layer growth of shells at room temperature has resulted in defects that limit PLQY and thus curtail the 0.2 performance of NPLs as an optical gain medium. Here, we introduce a hot-injection method growing giant alloyed shells using an approach that reduces core/shell lattice mismatch and suppresses Auger recombination. Near-unity PLQY is achieved with a narrow full-width-at-half-maximum (20 nm), accompanied by emission tunability (from 610 to 650 nm). The biexciton lifetime exceeds 1 ns, an order of magnitude longer than in conventional colloidal quantum dots (CQDs). Reduced Auger recombination enables record-low amplified spontaneous emission threshold of 2.4 mu J cm(-2) under one-photon pumping. This is lower by a factor of 2.5 than the best previously reported value in nanocrystals (6 /kJ cm(-2) for CdSe/CdS NPLs). Here, we also report single-mode lasing operation with a 0.55 mu J cm(-2) threshold under two-photoexcitation, which is also the best among nanocrystals (compared to 0.76 mu J cm(-2) from CdSe/CdS CQDs in the Fabry-Perot cavity). These findings indicate that hot-injection growth of thick alloyed shells makes ultrahigh performance NPLs.
  • Loading...
    Thumbnail Image
    Article
    High-efficiency flow-through induction heating
    (INST ENGINEERING TECHNOLOGY-IET, MICHAEL FARADAY HOUSE SIX HILLS WAY STEVENAGE, HERTFORD SG1 2AY, ENGLAND, 2020) Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan; 0000-0003-1793-112X; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü
    This study reports a newly designed induction heating system for efficient, fast, and safe flow-through heating. The system has a very simple architecture, which is composed of a transmitting coil, an isolating plastic pipe, and an embedded metal shell. Wireless energy transfer from the external coil to the internal metal shell through the pipe is essential for decreasing losses. Also, a large contact surface between a fluid and the immersed shell enables rapid heat transfer. The proposed heating system was systematically investigated for different shell geometries and the results were compared with a commercially available conductive flow-through heating device. As a proof-of-concept demonstration, a prototype of the designed induction heating system was manufactured and the heating measurements were conducted with water. Power transfer efficiency of the prototyped induction heating system was measured to be 97%. The comparative study indicates that such high-efficiency induction flow-through heating system offers a great potential for replacing the conventional conductive heating device used in household applications in which the rapid and compact heating is desired.
  • Loading...
    Thumbnail Image
    Article
    Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers
    (American Chemical Society, 2014) Yang, Xuyong; Mutlugun, Evren; Dang, Cuong; Dev, Kapil; Gao, Yuan; Tan, Swee Tiam; Sun, Xiao Wei; Demir, Hilmi Volkan; 0000-0003-3715-5594; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Mutlugun, Evren
    Flexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited choices of proper materials and device architectures as well as poor mechanical stability. Here, we show highly efficient, large-area QLED tapes emitting in red, green, and blue (RGB) colors with top-emitting design and polyimide tapes as flexible substrates. The brightness and quantum efficiency are 20 000 cd/m2 and 4.03%, respectively, the highest values reported for flexible QLEDs. Besides the excellent electroluminescence performance, these QLED films are highly flexible and mechanically robust to use as electrically driven light-emitting stickers by placing on or removing from any curved surface, facilitating versatile LED applications. Our QLED tapes present a step toward practical quantum dot based platforms for high-performance flexible displays and solid-state lighting.
  • Loading...
    Thumbnail Image
    Article
    Highly Stable, Near-Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero-Nanoplatelets Enabled by ZnS-Shell Hot-Injection Growth
    (WILEY-V C H VERLAG GMBH, POSTFACH 101161, 69451 WEINHEIM, GERMANY, 2019) Altintas, Yemliha; Quliyeva, Ulviyya; Gungor, Kivanc; Erdem, Onur; Kelestemur, Yusuf; Mutlugun, Evren; Kovalenko, Maksym V.; Demir, Hilmi Volkan; 0000-0003-1793-112X; 0000-0003-1616-2728; 0000-0002-4628-0197; 0000-0003-2212-965X; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü
    Colloidal semiconductor nanoplatelets (NPLs) offer important benefits in nanocrystal optoelectronics with their unique excitonic properties. For NPLs, colloidal atomic layer deposition (c-ALD) provides the ability to produce their core/shell heterostructures. However, as c-ALD takes place at room temperature, this technique allows for only limited stability and low quantum yield. Here, highly stable, near-unity efficiency CdSe/ZnS NPLs are shown using hot-injection (HI) shell growth performed at 573 K, enabling routinely reproducible quantum yields up to 98%. These CdSe/ZnS HI-shell hetero-NPLs fully recover their initial photoluminescence (PL) intensity in solution after a heating cycle from 300 to 525 K under inert gas atmosphere, and their solid films exhibit 100% recovery of their initial PL intensity after a heating cycle up to 400 K under ambient atmosphere, by far outperforming the control group of c-ALD shell-coated CdSe/ZnS NPLs, which can sustain only 20% of their PL. In optical gain measurements, these core/HI-shell NPLs exhibit ultralow gain thresholds reaching approximate to 7 mu J cm(-2). Despite being annealed at 500 K, these ZnS-HI-shell NPLs possess low gain thresholds as small as 25 mu J cm(-2). These findings indicate that the proposed 573 K HI-shell-grown CdSe/ZnS NPLs hold great promise for extraordinarily high performance in nanocrystal optoelectronics.
  • Loading...
    Thumbnail Image
    Article
    Low-Threshold Lasing from Copper-Doped CdSe Colloidal Quantum Wells
    (WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY, 2021) Yu, Junhong; Sharma, Manoj; Li, Mingjie; Delikanli, Savas; Sharma, Ashma; Taimoor, Muhammad; Altintas, Yemliha; McBride, James R.; Kusserow, Thomas; Sum, Tze-Chien; Demir, Hilmi Volkan; Dang, Cuong; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, Yemliha
    Transition metal doped colloidal nanomaterials (TMDCNMs) have recently attracted attention as promising nano-emitters due to dopant-induced properties. However, despite ample investigations on the steady-state and dynamic spectroscopy of TMDCNMs, experimental understandings of their performance in stimulated emission regimes are still elusive. Here, the optical gain properties of copper-doped CdSe colloidal quantum wells (CQWs) are systemically studied with a wide range of dopant concentration for the first time. This work demonstrates that the amplified spontaneous emission (ASE) threshold in copper-doped CQWs is a competing result between the biexciton formation, which is preferred to achieve population inversion, and the hole trapping which stymies the population inversion. An optimum amount of copper dopants enables the lowest ASE threshold of approximate to 7 mu J cm(-2), about 8-fold reduction from that in undoped CQWs (approximate to 58 mu J cm(-2)) under sub-nanosecond pulse excitation. Finally, a copper-doped CQW film embedded in a vertical cavity surface-emitting laser (VCSEL) structure yields an ultralow lasing threshold of 4.1 mu J cm(-2). Exploiting optical gain from TMDCNMs may help to further boost the performance of colloidal-based lasers.
  • Loading...
    Thumbnail Image
    Article
    Management of electroluminescence from silver-doped colloidal quantum well light-emitting diodes
    (Cell Press, 2022) Liu, Baiquan; Sharma, Manoj; Yu, Junhong; Wang, Lin; Shendre, Sushant; Sharma, Ashma; Izmir, Merve; Delikanli, Savas; Altintas, Yemliha; Dang, Cuong; Sun, Handong; Demir, Hilmi Volkan; 0000-0001-9375-7683; 0000-0001-5215-9740; 0000-0001-6183-4082; 0000-0002-2261-7103; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altıntaş, Yemliha
    Impurity doping is a promising strategy to afford colloidal nanocrystals exhibiting novel optical, catalytic, and electronic characteristics. However, some significant properties of noble metal-doped nanocrystals (NMD-NCs) remain unknown. Here, we report the electroluminescence (EL) from NMD-NCs. By doping silver impurity into cadmium selenide colloidal quantum wells (CQWs), dual-emission emitters are achieved and a light-emitting diode (LED) with a luminance of 1,339 cd m−2 is reported. In addition, the proposed energy gap engineering to manage exciton recombination is a feasible scheme for tunable EL emissions (e.g., the dopant emission is tuned from 606 to 761 nm). Furthermore, an organic-inorganic hybrid white LED based on CQWs is realized, reaching a color rendering index of 82. Moreover, flexible CQW-LEDs are reported. The findings present a step to unveil the EL property of NMD-NCs, which can be extended to other noble metal impurities, and pave the pathway for NMD-NCs as a class of electronic materials for EL applications.
  • Loading...
    Thumbnail Image
    Article
    Nanosecond colloidal quantum dot lasers for sensing
    (OPTICAL SOC AMER, 2010 MASSACHUSETTS AVE NW, WASHINGTON, DC 20036 USA, 2014) Mutlugun, Evren; Guilhabert, B.; Foucher, Caroline; Haughey, Anne-Marie; Gao, Yuan; Herrnsdorf, Johannes; Sun, Han-Dong; Demir, Hilmi Volkan; Dawson, Martin; Laurand, Nicolas; AGÜ, Mühendislik Fakültesi, Elektrik & Elektronik Mühendisliği Bölümü;
    Low-threshold, gain switched colloidal quantum dot (CQD) distributed-feedback lasers operating in the nanosecond regime are reported and proposed for sensing applications for the first time to the authors' knowledge. The lasers are based on a mechanically-flexible polymeric, second order grating structure overcoated with a thin-film of CQD/PMMA composite. The threshold fluence of the resulting lasers is as low as 0.5 mJ/cm(2) for a 610 nm emission and the typical linewidth is below 0.3 nm. The emission wavelength of the lasers can be set at the design stage and laser operation between 605 nm and 616 nm, while using the exact same CQD gain material, is shown. In addition, the potential of such CQD lasers for refractive index sensing in solution is demonstrated by immersion in water. (C) 2014 Optical Society of America
  • Loading...
    Thumbnail Image
    Article
    Near-Field Energy Transfer into Silicon Inversely Proportional to Distance Using Quasi-2D Colloidal Quantum Well Donors
    (WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY, 2021) Humayun, Muhammad Hamza; Hernandez-Martinez, Pedro Ludwig; Gheshlaghi, Negar; Erdem, Onur; Altintas, Yemliha; Shabani, Farzan; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, Yemliha
    Silicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Forster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2O3) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d(-1) with 25% efficiency at a donor-acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.
  • Loading...
    Thumbnail Image
    Article
    Optical Gain in Ultrathin Self-Assembled Bi-Layers of Colloidal Quantum Wells Enabled by the Mode Confinement in their High-Index Dielectric Waveguides
    (WILEY-V C H VERLAG GMBH, POSTFACH 101161, 69451 WEINHEIM, GERMANY, 2020) Foroutan-Barenji, Sina; Erdem, Onur; Gheshlaghi, Negar; Altintas, Yemliha; Demir, Hilmi Volkan; 0000-0003-1793-112X; 0000-0003-0623-8987; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü
    This study demonstrates an ultra-thin colloidal gain medium consisting of bi-layers of colloidal quantum wells (CQWs) with a total film thickness of 14 nm integrated with high-index dielectrics. To achieve optical gain from such an ultra-thin nanocrystal film, hybrid waveguide structures partly composed of self-assembled layers of CQWs and partly high-index dielectric material are developed and shown: in asymmetric waveguide architecture employing one thin film of dielectric underneath CQWs and in the case of quasi-symmetric waveguide with a pair of dielectric films sandwiching CQWs. Numerical modeling indicates that the modal confinement factor of ultra-thin CQW films is enhanced in the presence of the adjacent dielectric layers significantly. The active slabs of these CQW monolayers in the proposed waveguide structure are constructed with great care to obtain near-unity surface coverage, which increases the density of active particles, and to reduce the surface roughness to sub-nm scale, which decreases the scattering losses. The excitation and propagation of amplified spontaneous emission (ASE) along these active waveguides are experimentally demonstrated and numerically analyzed. The findings of this work offer possibilities for the realization of ultra-thin electrically driven colloidal laser devices, providing critical advantages including single-mode lasing and high electrical conduction.
  • Loading...
    Thumbnail Image
    Article
    Record High External Quantum Efficiency of 19.2% Achieved in Light-Emitting Diodes of Colloidal Quantum Wells Enabled by Hot-Injection Shell Growth
    (WILEY-V C H VERLAG GMBH, POSTFACH 101161, 69451 WEINHEIM, GERMANY, 2020) Liu, Baiquan; Altintas, Yemliha; Wang, Lin; Shendre, Sushant; Sharma, Manoj; Sun, Handong; Mutlugun, Evren; Demir, Hilmi Volkan; 0000-0003-3715-5594; 0000-0002-2261-7103; 0000-0001-5215-9740; 0000-0003-1793-112X; 0000-0001-9375-7683; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü
    Colloidal quantum wells (CQWs) are regarded as a highly promising class of optoelectronic materials, thanks to their unique excitonic characteristics of high extinction coefficients and ultranarrow emission bandwidths. Although the exploration of CQWs in light-emitting diodes (LEDs) is impressive, the performance of CQW-LEDs lags far behind other types of soft-material LEDs (e.g., organic LEDs, colloidal-quantum-dot LEDs, and perovskite LEDs). Herein, high-efficiency CQW-LEDs reaching close to the theoretical limit are reported. A key factor for this high performance is the exploitation of hot-injection shell (HIS) growth of CQWs, which enables a near-unity photoluminescence quantum yield (PLQY), reduces nonradiative channels, ensures smooth films, and enhances the stability. Remarkably, the PLQY remains 95% in solution and 87% in film despite rigorous cleaning. Through systematically understanding their shape-, composition-, and device-engineering, the CQW-LEDs using CdSe/Cd0.25Zn0.75S core/HIS CQWs exhibit a maximum external quantum efficiency of 19.2%. Additionally, a high luminance of 23 490 cd m(-2), extremely saturated red color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.715, 0.283), and stable emission are obtained. The findings indicate that HIS-grown CQWs enable high-performance solution-processed LEDs, which may pave the path for future CQW-based display and lighting technologies.
  • Loading...
    Thumbnail Image
    Article
    Self-Resonant Microlasers of Colloidal Quantum Wells Constructed by Direct Deep Patterning
    (AMER CHEMICAL SOC1155 16TH ST, NW, WASHINGTON, DC 20036, 2021) Gheshlaghi, Negar; Foroutan-Barenji, Sina; Erdem, Onur; Shabani, Farzan; Humayun, Muhammad Hamza; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, Yemliha
    Here, the first account of self-resonant fully colloidal mu-lasers made from colloidal quantum well (CQW) solution is reported. A deep patterning technique is developed to fabricate well-defined high aspect-ratio on-chip CQW resonators made of grating waveguides and in-plane reflectors. The fabricated waveguide-coupled laser, enabling tight optical confinement, assures in-plane lasing. CQWs of the patterned layers are closed-packed with sharp edges and residual-free lifted-off surfaces. Additionally, the method is successfully applied to various nanoparticles including colloidal quantum dots and metal nanoparticles. It is observed that the patterning process does not affect the nanocrystals (NCs) immobilized in the attained patterns and the different physical and chemical properties of the NCs remain pristine. Thanks to the deep patterning capability of the proposed method, patterns of NCs with subwavelength lateral feature sizes and micron-scale heights can possibly be fabricated in high aspect ratios.
  • Loading...
    Thumbnail Image
    Article
    Single-Mode Lasing from a Single 7 nm Thick Monolayer of Colloidal Quantum Wells in a Monolithic Microcavity
    (WILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANY, 2021) Foroutan-Barenji, Sina; Erdem, Onur; Delikanli, Savas; Yagci, Huseyin Bilge; Gheshlaghi, Negar; Altintas, Yemliha; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, Yemliha
    In this work, the first account of monolithically-fabricated vertical cavity surface emitting lasers (VCSELs) of densely-packed, orientation-controlled, atomically flat colloidal quantum wells (CQWs) using a self-assembly method and demonstrate single-mode lasing from a record thin colloidal gain medium with a film thickness of 7 nm under femtosecond optical excitation is reported. Specially engineered CQWs are used to demonstrate these hybrid CQW-VCSELs consisting of only a few layers to a single monolayer of CQWs and are achieved the lasing from these thin gain media by thoroughly modeling and implementing a vertical cavity consisting of distributed Bragg reflectors with an additional dielectric layer for mode tuning. Accurate spectral and spatial alignment of the cavity mode with the CQW films is secured with the help of full electromagnetic computations. While overcoming the long-pending problem of limited electrical conductivity in thicker colloidal films, such ultrathin colloidal gain media can be helpful to enable fully electrically-driven colloidal lasers.
  • Loading...
    Thumbnail Image
    Article
    Spectrally Wide-Range-Tunable, Efficient, and Bright Colloidal Light-Emitting Diodes of Quasi-2D Nanoplatelets Enabled by Engineered Alloyed Heterostructures
    (AMER CHEMICAL SOC, 1155 16TH ST, NW, WASHINGTON, DC 20036 USA, 2020) Altintas, Yemliha; Liu, Baiquan; Hernandez-Martinez, Pedro Ludwig; Gheshlaghi, Negar; Shabani, Farzan; Sharma, Manoj; Wang, Lin; Sun, Handong; Mutlugun, Evren; Demir, Hilmi Volkan; 0000-0003-1793-112X; 0000-0002-2261-7103; 0000-0001-9375-7683; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü
    Recently, there has been tremendous interest in the synthesis and optoelectronic applications of quasi-two-dimensional colloidal nanoplatelets (NPLs). Thanks to the ultranarrow emission linewidth, high-extinction coefficient, and high photostability, NPLs offer an exciting opportunity for high-performance optoelectronics. However, until now, the applications of these NPLs are limited to available discrete emission ranges, limiting the full potential of these exotic materials as efficient light emitters. Here, we introduce a detailed systematic study on the synthesis of NPLs based on the alloying mechanisms in core/shell, core/alloyed shell, alloyed core/shell, and alloyed core/alloyed shell heterostructures. Through the engineering of the band gap supported by the theoretical calculations, we carefully designed and successfully synthesized the NPL emitters with continuously tunable emission. Unlike conventional NPLs showing discrete emission, here, we present highly efficient core/shell NPLs with fine spectral tunability from green to deep-red spectra. As an important demonstration of these efficient emitters, the first-time implementation of yellow NPL light-emitting diodes (LEDs) has been reported with record device performance, including the current efficiency surpassing 18.2 cd A(-1), power efficiency reaching 14.8 lm W-1, and record luminance exceeding 46 900 cd m(-2). This fine and wide-range color tunability in the visible range from stable and efficient core/shell NPLs is expected to be extremely important for the optoelectronic applications of the family of colloidal NPL emitters.
  • Loading...
    Thumbnail Image
    Article
    Tailored Synthesis of Iron Oxide Nanocrystals for Formation of Cuboid Mesocrystals
    (AMER CHEMICAL SOC1155 16TH ST, NW, WASHINGTON, DC 20036, 2021) Soran-Erdem, Zeliha; Sharma, Vijay Kumar; Hernandez-Martinez, Pedro Ludwig; Demir, Hilmi Volkan; AGÜ, Mühendislik Fakültesi, Mühendislik Bilimleri Bölümü; Soran-Erdem, Zeliha
    In this work, we systematically studied the shape- and size-controlled monodisperse synthesis of iron oxide nanocrystals (IONCs) for their use as building blocks in the formation of mesocrystals. For this aim, on understanding the influence of the oleic acid concentration, iron-oleate concentration, and heating rate on the synthesis of robust and reproducible IONCs with desired sizes and shapes, we synthesized highly monodisperse similar to 11 nm sized nanocubes and nanospheres. Magnetic measurements of both cubic and spherical IONCs revealed the presence of mixed paramagnetic and superparamagnetic phases in these nanocrystals. Moreover, we observed that the magnetic moments of the nanocubes are more substantial compared to their spherical counterparts. We then demonstrated a simple magnetic-field-assisted assembly of nanocubes into three-dimensional (3D) cuboid mesocrystals while nanospheres did not form any mesocrystals. These findings indicate that small cubic nanocrystals hold great promise as potential building blocks of 3D magnetic hierarchical structures with their superior magnetic properties and mesocrystal assembly capability, which may have high relevance in various fields ranging from high-density data storage to biomedical applications.
  • «
  • 1 (current)
  • 2
  • »