Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Dedeturk, Bilge Kagan"

Filter results by typing the first few letters
Now showing 1 - 12 of 12
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 24
    Citation - Scopus: 37
    An Efficient Network Intrusion Detection Approach Based on Logistic Regression Model and Parallel Artificial Bee Colony Algorithm
    (Elsevier, 2024) Kolukisa, Burak; Dedeturk, Bilge Kagan; Hacilar, Hilal; Gungor, Vehbi Cagri
    In recent years, the widespread use of the Internet has created many issues, especially in the area of cybersecurity. It is critical to detect intrusions in network traffic, and researchers have developed network intrusion and anomaly detection systems to cope with high numbers of attacks and attack variations. In particular, machine learning and meta-heuristic methods have been widely used for network intrusion detection systems (NIDS). However, existing studies on these systems usually suffer from low performance results such as accuracy, F1-measure, false positive rate, and false negative rate, and generally do not use automatic parameter tuning techniques. To address these challenges, this study proposes a novel approach based on a logistic regression model trained using a parallel artificial bee colony (LR-ABC) algorithm with a hyper-parameter optimization technique. The performance of the proposed model is evaluated against state -of-the-art machine learning and deep learning models on two publicly available NIDS datasets. Comparative performance evaluations show that the proposed method achieved satisfactory results with accuracy of 88.25% on the UNSW-NB15 dataset and 90.11% on the NSL-KDD dataset, and F1-measures of 88.26% and 90.15%, respectively. These findings demonstrate the efficacy of the proposed LR-ABC model in enhancing the accuracy and reliability, while providing a scalable solution to adapt to the dynamic and evolving landscape of cybersecurity threats.
  • Loading...
    Thumbnail Image
    Article
    A Comparative Analysis of Passenger Flow Forecasting in Trams Using Machine Learning Algorithms
    (2024) Akbaş, Ayhan; Dedeturk, Beyhan Adanur; Dedeturk, Bilge Kagan
    Forecasting tram passenger flow is an important part of the intelligent transportation system since it helps with resource allocation, network design, and frequency setting. Due to varying destinations and departure times, it is difficult to notice large fluctuations, non-linearity, and periodicity of tram passenger flows. In this paper, the first-order difference technique is used to eliminate seasonal structure from the time series data and the performance of different machine learning algorithms on passenger flow forecasting in trams is evaluated. Furthermore, the impact of the Covid-19 pandemic on forecasting success is examined. For this purpose, the tram data of Kayseri Transportation Inc. for the years 2018-2021 are used. Different estimation models including Linear Regression, Support Vector Regression, Random Forest, Artificial Neural Network, Convolutional Neural Network, and LongTerm Short Memory are applied and the time series forecasting performances of the models are evaluated with MAPE and R2 metrics.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - Scopus: 7
    A Comparative Analysis on Medical Article Classification Using Text Mining & Machine Learning Algorithms
    (Institute of Electrical and Electronics Engineers Inc., 2021) Kolukisa, Burak; Dedeturk, Bilge Kagan; Dedeturk, Beyhan Adanur; Gulsen, Abdulkadir; Bakal, Gokhan
    The document classification task is one of the widely studied research fields on multiple domains. The core motivation of the classification task is that the manual classification efforts are impractical due to the exponentially growing document volumes. Thus, we densely need to exploit automated computational approaches, such as machine learning models along with data & text mining techniques. In this study, we concentrated on the classification of medical articles specifically on common cancer types, due to the significance of the field and the decent number of available documents of interest. We deliberately targeted MEDLINE articles about common cancer types because most cancer types share a similar literature composition. Therefore, this situation makes the classification effort relatively more complicated. To this end, we built multiple machine learning models, including both traditional and deep learning architectures. We achieved the best performance (R¿82% F score) by the LSTM model. Overall, our results demonstrate a strong effect of exploiting both text mining and machine learning methods to distinguish medical articles on common cancer types. © 2022 Elsevier B.V., All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 3
    CSA-DE-LR: Enhancing Cardiovascular Disease Diagnosis With a Novel Hybrid Machine Learning Approach
    (PeerJ Inc, 2024) Dedeturk, Beyhan Adanur; Dedeturk, Bilge Kagan; Bakir-Gungor, Burcu
    Cardiovascular diseases (CVD) are a leading cause of mortality globally, necessitating the development of efficient diagnostic tools. Machine learning (ML) and metaheuristic algorithms have become prevalent in addressing these challenges, providing promising solutions in medical diagnostics. However, traditional ML approaches often need to be improved in feature selection and optimization, leading to suboptimal performance in complex diagnostic tasks. To overcome these limitations, this study introduces a new hybrid method called CSA-DE-LR, which combines the clonal selection algorithm (CSA) and differential evolution (DE) with logistic regression. This integration is designed to optimize logistic regression weights efficiently for the accurate classification of CVD. The methodology employs three optimization strategies based on the F1 score, the Matthews correlation coefficient (MCC), and the mean absolute error (MAE). Extensive evaluations on benchmark datasets, namely Cleveland and Statlog, reveal that CSA-DELR outperforms state-of-the-art ML methods. In addition, generalization is evaluated using the Breast Cancer Wisconsin Original (WBCO) and Breast Cancer Wisconsin Diagnostic (WBCD) datasets. Significantly, the proposed model demonstrates superior efficacy compared to previous research studies in this domain. This study's findings highlight the potential of hybrid machine learning approaches for improving diagnostic accuracy, offering a significant advancement in the fields of medical data analysis and CVD diagnosis.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 2
    Citation - Scopus: 2
    Accelerated Artificial Bee Colony Optimization for Cost-Sensitive Neural Networks in Multi-Class Problems
    (Wiley, 2025) Hacilar, Hilal; Dedeturk, Bilge Kagan; Ozmen, Mihrimah; Celik, Mehlika Eraslan; Gungor, Vehbi Cagri
    Metaheuristics are advanced problem-solving techniques that develop efficient algorithms to address complex challenges, while neural networks are algorithms inspired by the structure and function of the human brain. Combining these approaches enables the resolution of complex optimization problems that traditional methods struggle to solve. This study presents a novel approach integrating the ABC algorithm with ANNs for weight optimization. The method is further enhanced by vectorization and parallelization techniques on both CPU and GPU to improve computational efficiency. Additionally, this study introduces a cost-sensitive fitness function tailored for multi-class classification to optimize results by considering relationships between target class levels. It validates these advancements in two critical applications: network intrusion detection and earthquake damage estimation. Notably, this study makes a significant contribution to earthquake damage assessment by leveraging machine learning algorithms and metaheuristics to enhance predictive models and decision-making in disaster response. By addressing the dynamic nature of earthquake damage, this research fills a critical gap in existing models and broadens the understanding of how machine learning and metaheuristics can improve disaster response strategies. In both domains, the ABC-ANN implementation yields promising results, particularly in earthquake damage estimation, where the cost-sensitive approach demonstrates satisfactory outcomes in macro-F1 and accuracy. The best results for macro-F1, weighted-F1, and overall accuracy provides best results with the UNSW-NB15 and earthquake datasets, showing values of 64%, 72%, 68%, and 60%, 80%, and 79%, respectively. Comparative performance evaluations reveal that the proposed parallel ABC-ANN model, incorporating the novel cost-sensitive fitness function and enhanced by vectorization and parallelization techniques, significantly reduces training time and outperforms state-of-the-art methods in terms of macro-F1 and accuracy in both network intrusion detection and earthquake damage estimation.
  • Loading...
    Thumbnail Image
    Article
    Citation - Scopus: 4
    CSA-DE-LR Enhancing Cardiovascular Disease Diagnosis With a Novel Hybrid Machine Learning Approach
    (PeerJ Inc., 2024) Dedeturk, Beyhan Adanur; Dedeturk, Bilge Kagan; Bakir-Güngör, Burcu
    Cardiovascular diseases (CVD) are a leading cause of mortality globally, necessitating the development of efficient diagnostic tools. Machine learning (ML) and metaheuristic algorithms have become prevalent in addressing these challenges, providing promising solutions in medical diagnostics. However, traditional ML approaches often need to be improved in feature selection and optimization, leading to suboptimal performance in complex diagnostic tasks. To overcome these limitations, this study introduces a new hybrid method called CSA-DE-LR, which combines the clonal selection algorithm (CSA) and differential evolution (DE) with logistic regression. This integration is designed to optimize logistic regression weights efficiently for the accurate classification of CVD. The methodology employs three optimization strategies based on the F1 score, the Matthews correlation coefficient (MCC), and the mean absolute error (MAE). Extensive evaluations on benchmark datasets, namely Cleveland and Statlog, reveal that CSA-DELR outperforms state-of-the-art ML methods. In addition, generalization is evaluated using the Breast Cancer Wisconsin Original (WBCO) and Breast Cancer Wisconsin Diagnostic (WBCD) datasets. Significantly, the proposed model demonstrates superior efficacy compared to previous research studies in this domain. This study’s findings highlight the potential of hybrid machine learning approaches for improving diagnostic accuracy, offering a significant advancement in the fields of medical data analysis and CVD diagnosis. © 2024 Elsevier B.V., All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Lifetime Maximization of IoT-Enabled Smart Grid Applications Using Error Control Strategies
    (Elsevier, 2024) Tekin, Nazli; Dedeturk, Bilge Kagan; Gungor, Vehbi Cagri
    Recently, with the advancement of Internet of Things (IoT) technology, IoT-enabled Smart Grid (SG) applications have gained tremendous popularity. Ensuring reliable communication in IoT-based SG applications is challenging due to the harsh channel environment often encountered in the power grid. Error Control (EC) techniques have emerged as a promising solution to enhance reliability. Nevertheless, ensuring network reliability requires a substantial amount of energy consumption. In this paper, we formulate a Mixed Integer Programming (MIP) model which considers the energy dissipation of EC techniques to maximize IoT network lifetime while ensuring the desired level of IoT network reliability. We develop meta-heuristic approaches such as Artificial Bee Colony (ABC) and Particle Swarm Optimization (PSO) to address the high computation complexity of large-scale IoT networks. Performance evaluations indicate that the EC-Node strategy, where each IoT node employs the most energy-efficient EC technique, yields a minimum of 8.9% extended lifetimes compared to the EC-Net strategies, where all IoT nodes employ the same EC method for a communication. Moreover, the PSO algorithm reduces the computational time by 77% while exhibiting a 2.69% network lifetime decrease compared to the optimal solution.
  • Loading...
    Thumbnail Image
    Article
    Breast Cancer Detection Using a New Parallel Hybrid Logistic Regression Model Trained by Particle Swarm Optimization and Clonal Selection Algorithms
    (Wiley, 2025) Etcil, Mustafa; Dedeturk, Bilge Kagan; Kolukisa, Burak; Bakir-Gungor, Burcu; Gungor, Vehbi Cagri
    Breast cancer is one of the most widespread kinds of cancer, especially in women, and it has a high mortality rate. With the help of technology, it is possible to develop a computer-aided method for the diagnosis of breast cancer, which is crucial for effective treatment. Recent breast cancer diagnosis studies utilizing numerous machine learning models were efficient and innovative. However, it has been observed that they may have problems such as long training times and low accuracy rates. To this end, in this study, we present a new classifier that utilizes a hybrid of the clonal selection algorithm (CSA) and the particle swarm optimization (PSO) algorithm for the training of the logistic regression (LR) model, which is named CSA-PSO-LR. The proposed method is evaluated using two publicly accessible breast cancer datasets, that is, the Wisconsin Diagnostic Breast Cancer (WDBC) database and the Wisconsin Breast Cancer Database (WBCD), with 10-fold cross-validation and Bayesian hyperparameter optimization techniques. Additionally, a CPU parallelization method is applied, which substantially shortens the training time of the model. The efficacy of the CSA-PSO-LR classifier is compared with state-of-the-art machine learning algorithms and related studies in the literature. Performance analysis indicates that the proposed method achieves 98.75% accuracy and 98.27% F1-score on the WDBC dataset, and 97.94% accuracy and 97.35% F1-score on the WBCD dataset. These results demonstrate the potential of the proposed method as an effective approach for improving breast cancer diagnosis.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 6
    Network Anomaly Detection Using Deep Autoencoder and Parallel Artificial Bee Colony Algorithm-Trained Neural Network
    (PeerJ Inc, 2024) Hacilar, Hilal; Dedeturk, Bilge Kagan; Bakir-Gungor, Burcu; Gungor, Vehbi Cagri
    Cyberattacks are increasingly becoming more complex, which makes intrusion detection extremely difficult. Several intrusion detection approaches have been developed in the literature and utilized to tackle computer security intrusions. Implementing machine learning and deep learning models for network intrusion detection has been a topic of active research in cybersecurity. In this study, artificial neural networks (ANNs), a type of machine learning algorithm, are employed to determine optimal network weight sets during the training phase. Conventional training algorithms, such as back- propagation, may encounter challenges in optimization due to being entrapped within local minima during the iterative optimization process; global search strategies can be slow at locating global minima, and they may suffer from a low detection rate. In the ANN training, the Artificial Bee Colony (ABC) algorithm enables the avoidance of local minimum solutions by conducting a high-performance search in the solution space but it needs some modifications. To address these challenges, this work suggests a Deep Autoencoder (DAE)-based, vectorized, and parallelized ABC algorithm for training feed-forward artificial neural networks, which is tested on the UNSW-NB15 and NF-UNSW-NB15-v2 datasets. Our experimental results demonstrate that the proposed DAE-based parallel ABC-ANN outperforms existing metaheuristics, showing notable improvements in network intrusion detection. The experimental results reveal a notable improvement in network intrusion detection through this proposed approach, exhibiting an increase in detection rate (DR) by 0.76 to 0.81 and a reduction in false alarm rate (FAR) by 0.016 to 0.005 compared to the ANN-BP algorithm on the UNSWNB15 dataset. Furthermore, there is a reduction in FAR by 0.006 to 0.0003 compared to the ANN-BP algorithm on the NF-UNSW-NB15-v2 dataset. These findings underscore the effectiveness of our proposed approach in enhancing network security against network intrusions.
  • Loading...
    Thumbnail Image
    Article
    Zaman Pencereli Araç Rotalama Problemleri İçin Kümeleme Temelli Klonal Seçim Algoritması
    (2023) Özmen, Mihrimah; Kolukısa, Burak; Dedeturk, Bilge Kagan
    Günümüzde doğal felaketlerin sayısı artmakta, daha sık yaşanmakta ve bu afetler, insan hayatını derinden etkilemektedir. Depremler, sel olayları ve salgınlar gibi doğal felaketlerin yol açtığı tahribatla başa çıkmak oldukça zordur. Türkiye'de gerçekleşen 6 Şubat depremi 11 ili etkileyerek yaklaşık 14 milyon insanı mağdur etmiştir. Deprem sonrası yol, köprü, tünel ve demiryolu gibi ulaşım altyapıları işlevsiz hale gelebilmekte ve alternatif rotaların hızla belirlenmesi zorlaşabilmektedir. Deprem sonrası yardım dağıtım faaliyetlerinde, araç rotalama problemleri (ARP) ile çözüm üretilebilir. ARP, çok sayıda müşteriye hizmet vermek amacıyla bir araç filosunu optimize eden kombinatoryal bir optimizasyon ve tam sayılı programlama problemidir. Zaman pencereli araç rotalama problemi (ZP-ARP) belirli zaman ve kapasite kısıtları altında en düşük maliyetle rotaların belirlenmesini amaçlar. Bu çalışmada, ZP-ARP için Kümeleme Temelli Klonal Seçim Algoritması (KSA) önerilmektedir. K-ortalama ve K-ortalama++ algoritmaları kullanılarak algoritmanın başlangıç çözüm kümesi iyileştirilmiş ve ardından KSA ile ZR-ARP için sonuçlar elde edilmiştir. Deneyler, ARP algoritmalarının sınanmasında literatürde sıklıkla kullanılan Solomon C1 ve R1 veri setleri üzerinde gerçekleştirilmiş olup, çeşitli problemler için sonuçları alınmıştır. Deney sonuçlarına göre, kümeleme algoritması ile başlangıç çözümü elde edilmesi, KSA’nın sonuçlarını iyileştirdiği ve KSA’ nın yerel optimuma takılmasını önlediği görülmüştür.
  • Loading...
    Thumbnail Image
    Conference Object
    Citation - Scopus: 2
    Comparative Performance Analysis of Ethereum and Optimism Smart Contracts in Health Insurance
    (Institute of Electrical and Electronics Engineers Inc., 2024) Dedeturk, Beyhan Adanur; Dedeturk, Bilge Kagan
    One type of insurance that people purchase to cover unexpected medical expenses is health insurance. In exchange for premium payments, the insurance company may cover a portion of the insured person's medical expenses, such as prescription medications, hospital stays, and doctor visits. This method makes access to healthcare easier and less expensive. Health insurance systems do, however, have a number of issues, including fair insurance premium calculation, automation, data verification, privacy and security, and cost effectiveness. These issues are starting to be addressed by blockchain technology, particularly with the help of smart contracts. Using a comparison analysis between Ethereum and Optimism smart contracts, this paper demonstrates the performance of health insurance. Simulation of these BC technologies was carried out both on the Sepolia testnet and using Alchemy. Tools and metrics provided to monitor the performance of Alchemy applications, detect errors, and analyze user interactions were used in the measurements. While Ethereum's well-established ecosystem offers robust support for smart contracts, Optimism distinguishes itself as a scalable substitute that delivers quicker transaction speeds and more affordable options. According to the analysis results, the advantages and disadvantages of Ethereum and Optimism are highlighted when it comes to health insurance. © 2025 Elsevier B.V., All rights reserved.
  • Loading...
    Thumbnail Image
    Article
    Can Artificial Intelligence Algorithms Recognize Knee Arthroplasty Implants From X-Ray Radiographs?
    (2023) Askin, Aydogan; Yalın, Mustafa; Golgelioglu, Fatih; Dedeturk, Bilge Kagan; Gündoğdu, Mehmet; Uzun, Mehmet Fatih
    Aims: This study aimed to investigate the use of a convolutional neural network (CNN) deep learning approach to accurately identify total knee arthroplasty (TKA) implants from X-ray radiographs. Methods: This retrospective study employed a deep learning CNN system to analyze pre-revision and post-operative knee X-rays from TKA patients. We excluded cases involving unicondylar and revision knee replacements, as well as low-quality or unavailable X-ray images and those with other implants. Ten cruciate-retaining TKA replacement models were assessed from various manufacturers. The training set comprised 69% of the data, with the remaining 31% in the test set, augmented due to limited images. Evaluation metrics included accuracy and F1 score, and we developed the software in Python using the TensorFlow library for the CNN method. A computer scientist with AI expertise managed data processing and testing, calculating specificity, sensitivity, and accuracy to assess CNN performance. Results: In this study, a total of 282 AP and lateral X-rays from 141 patients were examined, encompassing 10 distinct knee prosthesis models from various manufacturers, each with varying X-ray counts. The CNN technique exhibited flawless accuracy, achieving a 100% identification rate for both the manufacturer and model of TKA across all 10 different models. Furthermore, the CNN method demonstrated exceptional specificity and sensitivity, consistently reaching 100% for each individual implant model. Conclusion: This study underscores the impressive capacity of deep learning AI algorithms to precisely identify knee arthroplasty implants from X-ray radiographs. It highlights AI’s ability to detect subtle changes imperceptible to humans, execute precise computations, and handle extensive data. The accurate recognition of knee replacement implants using AI algorithms prior to revision surgeries promises to enhance procedure efficiency and outcomes.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback