Browsing by Author "Bal, Burak"
Now showing 1 - 20 of 40
- Results Per Page
- Sort Options
Article Accurate Prediction of Residual Stresses in Machining of Inconel 718 Alloy through Crystal Plasticity Modelling(2023) Bal, Burak; Cetın, Barıs; Yılmaz, Okan Deniz; Kesriklioglu, Sinan; Kapçı, Mehmet Fazıl; Buyukcapar, Ridvan; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiArtık gerilmelerin belirlenmesi ve değerlendirilmesi, savunma, havacılık ve otomotiv endüstrilerinde kullanılan bileşenlerin arızalanmasını önlemede çok önemlidir. Bu çalışmanın amacı, Inconel 718'in işlenmesi sırasında oluşan artık gerilmeleri doğru bir şekilde tahmin etmek için bir malzeme modeli sunmaktır. Ortogonal talaşlı imalat testleri, çeşitli kesme ve ilerleme hızlarında gerçekleştirilerek, Inconel 718'in işlenmesinden sonraki artık gerilmeler, X-Ray ışın kırınımı ile karakterize edildi. Bu süper alaşımın mikroyapısal girdilerini ticari olarak temin edilebilen bir sonlu eleman yazılımına (Deform 2D) aktarmak için bir viskoplastik kendi içinde tutarlı kristal plastisite modeli geliştirildi. Ayrıca simülasyonlar klasik Johnson - Cook malzeme modeli ile aynı işleme parametrelerinde yapıldı. Bu çalışmada elde edilen simülasyon ve deneysel sonuçlar, kristal plastisite tabanlı çok ölçekli ve çok ölçekli malzeme modelinin, mevcut modele kıyasla Inconel 718'in işleme kaynaklı kalıntı gerilmelerinin tahmin doğruluğunu önemli ölçüde geliştirdiğini ve yüzey kusurlarını en aza indirmek için kullanılabileceğini göstermiştir. Geliştirilen bu model, kesilmesi zor malzemelerin işlenmesinde yüzey kusurlarını ve üretim denemelerinin maliyetini en aza indirmek için kullanılabilir.Master Thesis Alüminyum 7068 Malzemesinin Mekanik Davranışlarının Hassas Olarak İncelenmesi ve Hasar Modelinin Araştırılması(Abdullah Gül Üniversitesi, 2018) Karaveli, Kadir Kaan; Karaveli, Kadir Kaan; Bal, Burak; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü; Karaveli, Kadir Kaan; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiYüksek mukavemet, yüksek tokluk, düşük yoğunluk ve korozyon dirençliliğinin ümit vaat eden kombinasyonu, onlarca yıldır alüminyum (Al) alaşımlarını binalardan havacılık sektörüne çeşitli uygulamalarda tercih edilen malzeme haline getirmiştir. Özellikle son zamanlarda geliştirilen malzemelerden bir tanesi olan Al 7068 alaşımı, olağanüstü mekanik ve mekanik özelliklerinden dolayı savunma sanayinde ve otomobil sanayinde kullanılmaktadır. Bu yüksek lisans tezinde, Al 7068-T651 alaşımının mekanik tepkisi ve Johnson-Cook hasar modeli araştırılmıştır. Özellikle, maksimum, minimum ve ortalama sonuçları dikkate alarak farklı uygulama alanları için farklı Johnson-Cook hasar parametreleri belirlenmiştir. Bu hasar parametreleri doğru Sonlu Elemanlar Analizi simülasyonları için kullanılabilir. Hasar parametrelerinin belirlenmesinde, hem hadde yönünde hem de hadde yönüne dik olarak çentikli ve düzgün numuneler üzerinde çekme deneyleri yapılmıştır. Çentik yarıçapı, farklı gerilim üçeksenliliği değerlerini sağlamak için pürüzsüz, 0,4 mm, 0,8 mm ve 2 mm olarak seçildi ve bu gerilim üçeksenliliği değerlerinde mekanik malzemenin tepkisi gözlemlendi. Çekme testleri, doğru sonuçları elde etmek için yedi kez tekrarlandı. Kırık numunelerin son kesit alanları optik mikroskop ile hesaplandı. Gerilim üçeksenliliği faktörünün ve hadde yönünün Al 7068-T651 alaşımının mekanik özellikleri üzerindeki etkileri başarılı bir şekilde araştırılmıştır. Tüm hasar parametreleri Levenberg-Marquardt optimizasyon yöntemi ile hesaplandı. Sonuç olarak, minimum, ortalama ve maksimum eşdeğer gerinim değerlerine dayanan üç farklı Johnson-Cook hasar parametresi hesaplanmıştır. Bu Johnson-Cook hasar parametreleri, bir hesaplama tekniği olan ve bu çeşitli mühendislik problemlerinin yaklaşık çözümünü elde etmek için kullanılan sonlu elemanlar analizinde farklı uygulamaların doğru hasar simülasyonları için kullanılabilir.Article Citation - WoS: 23Citation - Scopus: 23An Atomistic Study on the Help Mechanism of Hydrogen Embrittlement in Pure Metal Fe(Pergamon-Elsevier Science Ltd, 2024) Hasan, Md Shahrier; Kapci, Mehmet Fazil; Bal, Burak; Koyama, Motomichi; Bayat, Hadia; Xu, Wenwu; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiThe Hydrogen Enhanced Localized Plasticity (HELP) mechanism is one of the most important theories explaining Hydrogen Embrittlement in metallic materials. While much research has focused on hydrogen's impact on dislocation core structure and dislocation mobility, its effect on local dislocation density and plasticity remains less explored. This study examines both aspects using two distinct atomistic simulations: one for a single edge dislocation under shear and another for a bulk model under cyclic loading, both across varying hydrogen concentrations. We find that hydrogen stabilizes the edge dislocation and exhibits a dual impact on dislocation mobility. Specifically, mobility increases below a shear load of 900 MPa but progressively decreases above this threshold. Furthermore, dislocation accumulation is notably suppressed at around 1 % hydrogen concentration. These findings offer key insights for future research on Hydrogen Embrittlement, particularly in fatigue scenarios.Research Project Çok Ölçekli Malzeme Modellemesi Yoluyla Talaşlı İmalat Çıktılarının Daha Kapsamlı Ve Doğru Analizi(TUBİTAK, 2020) Bal, Burak; LAYEGH KHAVIDAKI, SEYD EHSAN; 0000-0002-7389-9155; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü; Bal, Burak; LAYEGH KHAVIDAKI, SEYD EHSAN; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik Fakültesiİnconel 718 savunma sanayi, uzay-havacılık ve otomotiv için kullanılan ve ileride kullanım alanı_x000D_ daha da genişleyebilecek olan süper alaşımdır. Bu projede Inconel 718 süper alaşımının talaşlı_x000D_ imalat sonucunda yüzeyinde oluşan kalıntı gerilimler, sertlik değişimleri ve kesici takımda oluşan_x000D_ aşınmalar gözlenmiştir. Talaşlı imalat simülasyonları için kullanılan Deform 2D programına, klasik_x000D_ Johnson-Cook malzeme modeli yerine, kristal plastisite tabanlı çok ölçekli malzeme davranışı_x000D_ tanıtılarak daha kapsamlı ve deneysel veriye daha yakın analizler yapılmıştır. Bu konunun seçilme_x000D_ nedeni, gerçek deneysel sonuçlara daha yakın sonuçlar elde edilip beklenmedik üretim hataları_x000D_ ve denemeleri en aza indirebilecek bir yöntem geliştirmektir. Bugüne kadar gerçekleştirilen talaşlı_x000D_ imalat simülasyonlarında malzeme davranışı genellikle tek ölçekli gerinim pekleşmesi, gerinim_x000D_ hızı pekleşmesi ve sıcaklık yumuşamasını kapsayan Johnson-Cook malzeme modelleri ile_x000D_ gerçekleştirilmiştir ve bu modeller malzemelerin mikroyapısal girdilerini içermemektedir. Bu_x000D_ projede ise Johnson-Cook malzeme modeli ile ve karşılaştırmalı olarak çok ölçekli kristal plastisite_x000D_ tabanlı malzeme modeli ile 2D deform programında farklı kesme hızlarında ve farklı ilerleme_x000D_ hızlarında simülasyonlar gerçekleştirilmiştir. Bu projede ilk olarak, Inconel 718 malzemesinin_x000D_ talaşlı imalat deneylerini yapılarak sonuçları gözlenmiştir. Daha sonra Johnson-Cook malzeme_x000D_ modellemesiyle gerçekleştirilen simülasyon sonuçları gözlenmiştir. Son olarak da Inconel 718_x000D_ süper alaşımının kristal plastisite modelinin yapılması ve mikroyapı girdileri ile elde edilen kristal_x000D_ plastisite modeli ile çıkarılan çok ölçekli ve çok eksenli malzeme davranışının Deform 2D_x000D_ simülasyonlarına tanıtılarak simülasyonu gerçekleştirip, elde edilen sonuçlar gözlenmiştir._x000D_ Yapılan simülasyonlar ve deney sonucunda, iki farklı malzeme modelin deneysel sonuçlarla_x000D_ karşılaştırılması yapılmıştır. Mikroyapı girdileri ile elde edilen kristal plastisite modeli ile çıkarılan_x000D_ çok ölçekli ve çok eksenli malzeme davranışının, tek ölçekli malzeme davranışı ile_x000D_ karşılaştırıldığında deneysel sonuçlara daha yakın sonuçlar verdiği gözlemlenmiştir. Böylelikle_x000D_ çok ölçekli malzeme modellemesiyle gerçekleştirilen simülasyonların daha gerçekçi ve güvenilir_x000D_ sonuçlar gösterdiği kanıtlanmıştır.Article Comprehensive Optimization of Shot Peening Intensity Using a Hybrid Model With AI-Based Techniques via Almen Tests(Walter de Gruyter Gmbh, 2025) Karaveli, Kadir Kaan; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiShot peening is a crucial surface treatment technique that significantly improves the mechanical properties of metallic components, particularly their fatigue resistance and ability to withstand corrosion cracking. This study aims to optimize the shot peening process for aviation applications by evaluating and comparing various mathematical modeling and optimization techniques. Seven mathematical models were analyzed using a neuro-regression method (NRM), among which the second-order trigonometric non-linear (SOTN) model exhibited the highest reliability, achieving R2 values of 0.93 and 0.90 for training and testing datasets, respectively. To improve the model's robustness, four optimization algorithms - differential evolution (DE), simulated annealing (SA), Nelder-Mead (NM), and random search (RS) - were applied to the SOTN model. Although each technique offered valuable insights, performance fluctuations across different intensity ranges necessitated the development of a hybrid optimization model that combines the strengths of all four methods. The hybrid model achieved a mean error of approximately 2.69 %, outperforming individual approaches and demonstrating strong potential for reliable shot peening optimization across a wide range of target intensities. These findings provide a comprehensive methodology for AI-based optimization of surface treatment processes in engineering applications.Conference Object Citation - Scopus: 1Data-Driven Discovery and DFT Modeling of Fe4H on the Atomistic Level(Elsevier B.V., 2024) Zagorac, Dejan; Zagorac, Jelena; Djukic, Milos B.; Bal, Burak; Schön, Johann Christian; 0000-0002-7389-9155; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiSince their discovery, iron and hydrogen have been two of the most interesting elements in scientific research, with a variety of known and postulated compounds and applications. Of special interest in materials engineering is the stability of such materials, where hydrogen embrittlement has gained particular importance in recent years. Here, we present the results for the Fe-H system. In the past, most of the work on iron hydrides has been focused on hydrogen-rich compounds since they have a variety of interesting properties at extreme conditions (e.g. superconductivity). However, we present the first atomistic study of an iron-rich Fe4H compound which has been predicted using a combination of data mining and quantum mechanical calculations. Novel structures have been discovered in the Fe4H chemical system for possible experimental synthesis at the atomistic level. © 2024 Elsevier B.V., All rights reserved.Article Citation - WoS: 31Citation - Scopus: 31A Detailed Investigation of the Effect of Hydrogen on the Mechanical Response and Microstructure of Al 7075 Alloy Under Medium Strain Rate Impact Loading(Pergamon-Elsevier Science Ltd, 2020) Bal, Burak; Okdem, Bilge; Bayram, Ferdi Caner; Aydin, Murat; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiEffects of hydrogen and temperature on impact response and corresponding microstructure of aluminum (Al) 7075 alloy were investigated under medium strain rate impact loading. The specimens were subjected to impact energy of 12 J and 25 J, corresponding to impact velocities of 2.13 m/s and 3.08 m/s, respectively. These energy levels were decided after a couple of impact tests with different impact energy values, such as 6 J, 10 J, 12 J, 25 J. The experiments were conducted at five different temperatures. Electrochemical charging method was used for hydrogen charging. Microstructural observations of hydrogen uncharged and hydrogen charged specimens were carried out by scanning electron microscope. Hydrogen changed the crack propagation behavior of Al 7075 alloy depending on the temperature. Coexistence of several hydrogen embrittlement mechanisms, such as hydrogen enhanced decohesion (HEDE) and hydrogen enhanced localized plasticity (HELP) were observed under impact loading. The impact response of Al 7075 was significantly deteriorated by the hydrogen charging and changing temperature affected the absorbed energy of hydrogen-charged specimens. In addition, molecular dynamics simulations were conducted to uncover the atomistic origin of hydrogen embrittlement mechanisms under impact loading. In particular, hydrogen decreased the cohesive energy and enhanced the average dislocation mobility. Therefore, the experimental results presented herein constitute an efficient guideline for the usage of Al alloys that are subject to impact loading in service in a wide range of temperatures. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Determination of Material Response and Optimization of Johnson–Cook Damage Parameters of Aluminium 7075 Alloy(2018) Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiAlüminyum 7075-T651 alaşımının mekanik davranışına hadde yönünün ve çentik yarıçapının etkileri incelenmiş ve bu alaşımın iki farklı hadde yönü için Johnson-Cook hasar katsayıları hesaplanmıştır. Spesifik olarak, hadde yönünde ve hadde yönüne dik olarak hazırlanmış alüminyum 7075-T651 alaşımının mekanik davranışları çekme testleri sonucunda belirlenmiştir. 3 farklı çentik yarıçapındaki numunelere ve çentiksiz numunelere olmak üzere toplamda 56 adet çekme testi gerçekleştirilmiştir. Her bir çekme testi tutarlılığı sağlamak ve gerçek mekanik davranışa en yakın sonucu en düşük hata ile elde etmek adına 7 kere tekrarlanmıştır. Deneysel bulgular hadde yönüne dik olmanın uzamayı azalttığını fakat elastik bölgedeki mekanik özellikleri arttırabildiğini göstermektedir. Johnson-Cook hasar katsayılarının hesaplanmasında kullanılan kırılmış yüzey alanları optik mikroskop ile ölçülmüştür. Alüminyum 7075-T651 alaşımının Johnson-Cook hasar katsayıları farklı uygulama alanları için Levenberg-Marquardt optimizasyon methodunu kullanarak hesaplanmıştır. Bu sebeple, bu çalışma hadde yönünde ve hadde yönüne dik olarak hazırlanmış alüminyum 7075-T651 alaşımının farklı uygulama alanlarındaki hassas hasar simulasyonları için yol gösterici bir alan açmaktadır.Article Development of an Optical Measurement System for Surface Depth Measurements and Study of Focus Effect on Determination of Steel Inclusion Content by EN-10247(SPIE - Society of Photo-Optical Instrumentation Engineers, 2021) Durkaya, Goksel; Kurtuldu, Huseyin; Cetin, Baris; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiSurface inspections are important in steelmaking processes to characterize the final product's quality. We present a method to measure surface depth profile using laser scattering geometry. This technique is used to analyze the focus effect on microscopic analyses of steel inclusions using the EN-10247 standard. The results presented herein offer promising new perspectives for the metal manufacturing industry through cost-effective solutions that attain quasi in-line process inspection capabilities. (C) 2021 Society of Photo-Optical Instrumentation Engineers (SPIE)Article Citation - WoS: 9Citation - Scopus: 9Edge Dislocation Depinning From Hydrogen Atmosphere in Α-Iron(Pergamon-Elsevier Science Ltd, 2024) Kapci, Mehmet Fazil; Yu, Ping; Marian, Jaime; Liu, Guisen; Shen, Yao; Li, Yang; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiUnderstanding the dislocation motion in hydrogen atmosphere is essential for revealing the hydrogen-related degradation in metallic materials. Atomic simulations were adopted to investigate the interaction between dislocations and hydrogen atoms, where the realistic hydrogen distribution in the vicinity of the dislocation core was emulated from the Grand Canonical Monte Carlo computations. The depinning of edge dislocations in alpha-Fe at different temperatures and hydrogen concentrations was then studied using Molecular Dynamics simulations. The results revealed that an increase in bulk hydrogen concentration increases the flow stress due to the pinning effect of solute hydrogen. The depinning stress was found to decrease due to the thermal activation of the edge dislocation at higher temperatures. In addition, prediction of the obtained results was performed by an elastic model that can correlate the bulk hydrogen concentration to depinning stress.Article Citation - WoS: 12Citation - Scopus: 16Effect of Hydrogen on Fracture Locus of Fe-16Mn Twip Steel(Pergamon-Elsevier Science Ltd, 2020) Bal, Burak; Cetin, Baris; Bayram, Ferdi Caner; Billur, Eren; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiEffect of hydrogen on the mechanical response and fracture locus of commercial TWIP steel was investigated comprehensively by tensile testing TWIP steel samples at room temperature and quasi-static regime. 5 different sample geometries were utilized to ensure different specific stress states and a digital image correlation (DIC) system was used during tensile tests. Electrochemical charging method was utilized for hydrogen charging and microstructural characterizations were carried out by scanning electron microscope. Stress triaxiality factors were calculated throughout the plastic deformation via finite element analysis (FEA) based simulations and average values were calculated at the most critical node. A specific Python script was developed to determine the equivalent fracture strain. Based on the experimental and numerical results, the relation between the equivalent fracture strain and stress triaxiality was determined and the effect of hydrogen on the corresponding fracture locus was quantified. The deterioration in the mechanical response due to hydrogen was observed regardless of the sample geometry and hydrogen changed the fracture mode from ductile to brittle. Moreover, hydrogen affected the fracture locus of TWIP steel by lowering the equivalent failure strains at given stress triaxiality levels. In this study, a modified Johnson-Cook failure mode was proposed and effect of hydrogen on damage constants were quantified. (C) 2020 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.Article Citation - WoS: 4Citation - Scopus: 5Effect of Pre-Rolling Temperature on the Interfacial Properties and Formability of Steel-Steel Bilayer Sheet in Single Point Incremental Forming(Sage Publications Ltd, 2021) Hassan, Malik; Hussain, Ghulam; Ali, Aaqib; Ilyas, Muhammad; Malik, Sohail; Khan, Wasim A.; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiThe aim of this research was to investigate the effect of pre-rolling temperature on the interfacial properties in delamination modes 1 and 2; and formability in Single Point Incremental Forming (SPIF) of Steel-Steel (St-St) bilayer sheet prepared by roll bonding process. The roll bonding process was performed at three pre-rolling temperatures, 700 degrees C, 800 degrees C, and 950 degrees C, with a constant thickness reduction ratio of 58%. The bond strength and critical strain energy release rate (CSERR) were measured to characterize the interface of St-St bilayer sheet. T-peel test for mode 1 and tensile shear test for mode 2 were conducted to determine the interfacial properties. The formability of St-St bilayer sheet in SPIF was measured in terms of maximum wall angle. The results showed that the increase in pre-rolling temperature from 700 degrees C to 950 degrees C enhanced the bond strength and CSERR, in both mode 1 and 2. The enhancement in bond strength with an increase in pre-rolling temperature was 149.5% and 203% in mode 1 and 2, respectively. However, the increase in CSERR in mode 1 and 2 was 115% and 367%, respectively. The formability of St-St bilayer sheet also showed an increasing trend with an increase in pre-rolling temperature. Moreover, a consistent relation between formability and interfacial parameters was observed. It was also found that to successively deform the bilayer sheet into the desired shape, it is necessary for the sheet to be heated above the critical temperature during fabrication to facilitate good bonding between two sheets.Article Citation - WoS: 13Citation - Scopus: 14The Effect of Strain Rate on the Hydrogen Embrittlement Susceptibility of Aluminum 7075(ASME, 2023) Baltacioglu, Mehmet Furkan; Cetin, Baris; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiThe effects of changing the strain rate regime from quasi-static to medium on hydrogen susceptibility of aluminum (Al) 7075 were investigated using tensile tests. Strain rates were selected as 1 s(-1) and 10(-3) s(-1) and tensile tests were conducted on both hydrogen uncharged and hydrogen charged specimens at room temperature. Electrochemical hydrogen charging method was utilized and the diffusion length of hydrogen inside Al 7075 was modeled. Material characterizations were carried out by X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX) and microstructural observations of hydrogen uncharged and hydrogen charged specimens were performed by scanning electron microscope (SEM). As opposed to earlier studies, hydrogen embrittlement (HE) was more pronounced at high strain rate cases. Moreover, hydrogen enhanced localized plasticity (HELP) was the more dominant hydrogen embrittlement mechanism at slower strain rate but coexistence of hydrogen enhanced localized plasticity and hydrogen enhanced decohesion was observed at a medium strain rate. Overall, the current findings shed light on the complicated hydrogen embrittlement behavior of Al 7075 and constitute an efficient guideline for the usage of Al 7075 that can be subject to different strain rate loadings in service.Article Citation - WoS: 5Citation - Scopus: 5Experimental and Molecular Dynamics Simulation-Based Investigations on Hydrogen Embrittlement Behavior of Chromium Electroplated 4340 Steel(ASME, 2021) Dogan, Ozge; Kapci, Mehmet Fazil; Esat, Volkan; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiIn this study, chromium electroplating process, corresponding hydrogen embrittlement, and the effects of baking on hydrogen diffusion are investigated. Three types of materials in the form of Raw 4340 steel, Chromium electroplated 4340 steel, and Chromium electroplated and baked 4340 steel are used in order to shed light on the aforementioned processes. Mechanical and microstructural analyses are carried out to observe the effects of hydrogen diffusion. Mechanical analyses show that the tensile strength and hardness of the specimens deteriorate after the chrome-electroplating process due to the presence of atomic hydrogen. X-ray diffraction (XRD) analyses are carried out for material characterization. Microstructural analyses reveal that hydrogen enters into the material with chromium electroplating process, and baking after chromium electroplating process is an effective way to prevent hydrogen embrittlement. Additionally, the effects of hydrogen on the tensile response of alpha-Fe-based microstructure with a similar chemical composition of alloying elements are simulated through molecular dynamics (MD) method.Research Project Farklı Mikroyapısal Değişkenlerin Yüksek Manganlı Fe-%33Mn Çeliğinin Pekleşme Davranışına Etkilerinin Araştırılması(TUBİTAK, 2019) Bal, Burak; 0000-0002-7389-9155; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik Fakültesiİleri yüksek mukavemetli çelikler sahip olmuş oldukları yüksek mukavemet, yüksek süneklik ve_x000D_ yüksek pekleşme kabiliyeti gibi üstün özellikler sayesinde otomotiv, demiryolu, savunma sanayi_x000D_ uygulamalarında ve yapı endüstrisi gibi pek çok farklı alanda tercih edilmektedir. Bu projede yeni_x000D_ nesil yüksek mukavemetli çelikler sınıfından olan yüksek manganlı çeliklerin pekleşme_x000D_ davranışına etki eden farklı mikroyapısal değişkenlerin etkisi kristal plastisite modellemesi_x000D_ yoluyla araştırılmıştır. Öncelikle östenitik Fe-33Mn çeliğinin 1x10-4 s_x000D_ -1 gerinim hızındaki malzeme_x000D_ davranışının, tane sayısı gibi faktörleri girdi olarak kullanarak kristal plastisite modellemesi_x000D_ yapılmıştır ve pekleşme sabitleri bulunmuştur. Daha sonra bulunan pekleşme sabitleri sabit_x000D_ tutularak, malzeme dokusu, hız gradyanı, gerinim artışı ve etkileşim tensörü cinsi gibi tek bir_x000D_ mikroyapısal girdi değiştirilerek bu girdilerin malzemenin toplam pekleşme davranışına etkisi_x000D_ açığa çıkarılmıştır. Spesifik olarak, proje önerisinin üzerine konularak farklı karbon_x000D_ konsantrasyonlarının pekleşme sabitlerine olan etkisi de hesaplanmıştır. Bahsi geçen çeliğin_x000D_ oda sıcaklığında ve düşük gerinim hızındaki malzeme davranışı proje yürütücüsünün daha_x000D_ önceki çalışmalarında çekme testi yardımı ile makro ölçekte gözlemlenmiştir. Fe-33Mn çeliğinin_x000D_ seçilme nedeni, yüksek mangalı östenitik çeliklerinin sahip olduğu çok yüksek pekleşme_x000D_ kapasitesi ile birlikte yüksek süneklik değerleri ve aşınma direnci sayesinde uzay-havacılık,_x000D_ otomotiv, savunma sanayi gibi öncül sektörlerde yer alması ve önümüzdeki yıllarda çok daha_x000D_ fazla miktarda yer alacağına inanılmasıdır. Bu konunun seçilme nedeni ise, bugüne kadar_x000D_ yapılan kristal plastisite çalışmalarında deneysel davranışı modelleyebilmek için genelde tek tip_x000D_ malzeme dokusu, hız gradyanı, gerinim artışı ve etkileşim tensörü kullanılmıştır. Bu doğru bir_x000D_ yaklaşım olmasına rağmen bu girdilerin toplam malzeme pekleşme davranışına etkisi_x000D_ bilinmemektedir. Bu kapsamda kristal plastisite modellemeleri Visco-Plastic Self-Consistent_x000D_ (VPSC) algoritması yardımı ile gerçekleştirilmiştir. Fe-33Mn çeliğinin düşük gerinim hızındaki tek_x000D_ eksenli deformasyon davranışı voce tipi pekleşme teorisi ile modellenmiştir ve bulunan Voce_x000D_ parametreleri bütün simülasyonlarda aynı kalmıştır. Böylelikle değişik mikroyapısal değişkenlerin_x000D_ Fe-33Mn çeliğinin pekleşme davranışına etkileri aynı pekleşme teorisi ile açığa çıkarılmıştır.Article Citation - WoS: 14Citation - Scopus: 18Finite Element Analysis of the Stress Distribution Associated With Different Implant Designs for Different Bone Densities(Wiley, 2022) Kurtulus, Ikbal Leblebicioglu; Kilic, Kerem; Bal, Burak; Kilavuz, Ahmet; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiPurpose The main objective of this study was to investigate the influence of implant design, bone type, and abutment angulation on stress distribution around dental implants. Materials and methods Two implant designs with different thread designs, but with the same length and brand were used. The three-dimensional geometry of the bone was simulated with four different bone types, for two different abutment angulations. A 30 degrees oblique load of 200 N was applied to the implant abutments. Maximum principal stress and minimum principal stresses were obtained for bone and Von misses stresses were obtained for dental implants. Results The distribution of the load was concentrated at the coronal portion of the bone and implants. The stress distributions to the D4 type bone were higher for implant models. Increased bone density and increased cortical bone thickness cause less stress on bone and implants. All implants showed a good distribution of forces for non-axial loads, with higher stresses concentrated at the crestal region of the bone-implant interface. In implant types using straight abutments there was a decrease in stress as the bone density decreased. The change in the abutment angle also caused an increase in stress. Conclusions The use of different implant threads and angled abutments affects the stress on the surrounding bone and implant. In addition, it was observed that a decrease in density in trabecular bone and a decrease in cortical bone thickness increased stress.Article Functional Surfaces of the Future: Integrating Texturing and Coatings for Superior Performance(Elsevier Sci Ltd, 2025) Yuan, Yanjie; Louhichi, Borhen; Heidarshenas, Behzad; Alrasheedi, Nashmi H.; Bal, Burak; Hussain, Ghulam; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiCurrent surface texturing and coating methods exhibit performance improvements but face significant limitations, including inconsistent durability, scalability restrictions, and inadequate integration of their properties. Integrating these approaches can effectively address these challenges. Modern methods, such as laser machining and additive manufacturing, are paving the way for mainstream applications, offering the opportunity to develop new high-performance surfaces in various fields. For instance, combining laser texturing and advanced coating can address durability issues by developing precise patterns and strong adhesion. The combination of surface texturing and coating improves tribological performance and enhances service maintenance by overcoming the limitations of conventional methods. This offers advanced capabilities for various applications, including medical implants and marine environments. In this context, the synergistic application of texturing and coating technologies is expected to be crucial in developing high-performing advanced materials suitable for various applications. This study reviews the progress on synchronizing texturing and coating approaches. Governing mechanisms and controlling factors are identified and discussed. The benefits of applying synergetic approaches to surface performance are recorded. Optimum conditions to realize the best results are determined. Current challenges, emerging trends, and potential solutions to address these issues are proposed.Master Thesis Hidrojen Gevrekliğinin Çok Ölçekli Modelleme Yaklaşımıyla İncelenmesi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2021) Kapçı, Mehmet Fazıl; Bal, Burak; AGÜ, Fen Bilimleri Enstitüsü, İleri Malzemeler ve Nanoteknoloji Ana Bilim Dalı; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiMalzemelerin kullanım sırasında veya talaşlı imalat, kaynak, elektro kaplama gibi işlemler sırasında hidrojene maruz kalması mekanik davranışlarının bozulmasına sebebiyet verebilmektedir. Hidrojen gevrekliği olarak bilinen bu durumda atomik hidrojen metal kristali içerisine nüfuz ederek buradaki kristal kusurlar etrafında birikmekte ve bu yapıların yük altındaki davranışlarını değiştirmektedir. Bu tez çalışmasında hidrojen difüzyonu ve bunun yanında hidrojen etkisinde dislokasyon hareketliliğinin atomik mekanizmaları, α-Fe'nin plastisite davranışında aktif olan iki kayma sistemi, spesifik olarak ½<111>{110} ve ½<111>{112} kenar dislokasyonları için incelenmiştir. Detaylı olarak farklı hidrojen yoğunluklarında tek kristal içinde dislokasyon yığını kaymaları, bunun yanında tane sınırı içeren yapılarda dislokasyonun tane sınırından geçişi bcc demir kristallerinde değerlendirilmiştir. Bununla beraber, bahsi geçen yapıların sabit gerilme oranı altında tek yönlü çekme davranışının analizleri yapılmıştır. Son olarak bcc fcc ve hcp kristal yapılarda hidrojen difüzyon ve geri difüzyonu nümerik modeller ile incelenmiştir. Elde edilen sonuçlara göre sıkça kullanılan HELP mekanizmasının aksine hidrojenin dislokasyon hızını azalttığı görülmüştür. Buna karşın tane sınırı elastik gerilmelerinin etkisiyle bu bölgelerde hidrojen ile dislokasyon lokalizasyonu da gözlenmiştir. Hidrojenin önceden varolan dislokasyonların hızını düşürmesi ile tek yönlü çekme davranışında sertleşme görülmüştür. Ayrıca, hidrojenin tane sınırlarında birikimi yeni tane sınırı oluşumlarını baskılamakta ve gevrek kırılmalara sebebiyet verebilen sertleşme davranışını arttırmaktadır.Article Citation - WoS: 20Citation - Scopus: 26High-Concentration Carbon Assists Plasticity-Driven Hydrogen Embrittlement in a Fe-High Mn Steel With a Relatively High Stacking Fault Energy(Elsevier Science SA, 2018) Tugluca, Ibrahim Burkay; Koyama, Motomichi; Bal, Burak; Canadinc, Demircan; Akiyama, Eiji; Tsuzaki, Kaneaki; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiWe investigated the effects of electrochemical hydrogen charging on the mechanical properties of a Fe-33Mn-1.1C austenitic steel with high carbon concentration and relatively high stacking fault energy. Hydrogen pre charging increased the yield strength and degraded the elongation and work-hardening capability. The increase in yield strength is a result of the solution hardening of hydrogen. A reduction in the cross-sectional area by subcrack formation is the primary factor causing reduction in work-hardening ability. Fracture modes were detected to be both intergranular and transgranular regionally. Neither intergranular nor transgranular cracking modes are related to deformation twinning or simple decohesion in contrast to conventional Fe-Mn-C twinning induced plasticity steels. The hydrogen-assisted crack initiation and subsequent propagation are attributed to plasticity-dominated mechanisms associated with strain localization. The occurrence of dynamic strain aging by the high carbon content and ease of cross slip owing to the high stacking fault energy can cause strain/damage localization, which assists hydrogen embrittlement associated with the hydrogen-enhanced localized plasticity mechanism.Article Hydrogen Susceptibility of Al 5083 Under Ultra-High Strain Rate Ballistic Loading(Walter de Gruyter Gmbh, 2024) Baltacioglu, Mehmet Furkan; Mozafari, Farzin; Aydin, Murat; Cetin, Baris; Oktan, Aynur Didem; Teoman, Atanur; Bal, Burak; 01. Abdullah Gül University; 02.06. Makine Mühendisliği; 02. Mühendislik FakültesiThe effect of hydrogen on the ballistic performance of aluminum (Al) 5083H131 was examined both experimentally and numerically in this study. Ballistics tests were conducted at a 30 degrees obliquity in accordance with the ballistic test standard MIL-DTL-46027 K. The strike velocities of projectiles were ranged from 240 m s-1 to 500 m s-1 level in the room temperature. Electrochemical hydrogen charging method was utilized to introduce hydrogen into material. Chemical composition of material was analyzed using energy dispersive X-ray (EDX) analysis. Instant camera pictures were captured using high-speed camera to compare H-uncharged and H-charged specimen ballistics tests. The volume loss in partially penetrated specimens were assessed using the 3D laser scanning method. Microstructural examinations were conducted utilizing scanning electron microscopy (SEM). It was observed that with the increased deformation rate, the dominance of the HEDE mechanism over HELP became evident. Furthermore, the experimental findings were corroborated through numerical methods employing finite element analysis (FEM) along with the Johnson-Cook plasticity model and failure criteria. Inverse optimization technique was employed to implement and fine-tune the Johnson-Cook parameters for H-charged conditions. Upon comparing the experimental and numerical outcomes, a high degree of consistency was observed, indicating the effective performance of the model.
