Browsing by Author "Akyildiz, Ian F."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Channel-aware routing and priority-aware multi-channel scheduling for WSN-based smart grid applications(ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD24-28 OVAL RD, LONDON NW1 7DX, ENGLAND, 2016) Yigit, Melike; Gungor, V. Cagri; Fadel, Etimad; Nassef, Laila; Akkari, Nadine; Akyildiz, Ian F.; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Gungor, V. CagriWireless Sensor Networks (WSNs) are one of the most promising solutions for smart grid applications due to advantages, such as their low-cost, different functionalities, and successful adoption to smart grid environments. However, providing quality of service (QoS) requirements of smart grid applications with WSNs is difficult because of the power constraints of sensor nodes and harsh smart grid channel conditions, such as RF interference, noise, multi-path fading and node contentions. To address these communication challenges, in this paper link-quality-aware routing algorithm (LQ-CMST) as well as the priority and channel-aware multi-channel (PCA-MC) scheduling algorithm have been proposed for smart grid applications. Furthermore, the effect of different modulation and encoding schemes on the performance of the proposed algorithms has been evaluated under harsh smart grid channel conditions. Comparative performance evaluations through extensive simulations show that the proposed algorithms significantly reduce communication delay and the choice of encoding and modulation schemes is critical to meet the requirements of envisioned smart grid applications. (C) 2016 Elsevier Ltd. All rights reserved.Article A survey on wireless sensor networks for smart grid(ELSEVIER, 2015) Fadel, Etimad; Gungor, Vehbi Cagri; Nassef, Laila; Akkari, Nadine; Abbas Malik M.G.; Almasri, Suleiman; Akyildiz, Ian F.; 0000-0003-0803-8372; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Gungor, Vehbi CagriThe traditional power grid in many countries suffers from high maintenance costs and scalability issues along with the huge expense of building new power stations, and lack of efficient system monitoring that could increase the overall performance by acting proactively in preventing potential failures. To address these problems, a next-generation electric power system, called the smart grid (SG), has been proposed as an evolutionary system for power generation, transmission, and distribution. To this end, the SGs utilize renewable energy generation, smart meters and modern sensing and communication technologies for effective power system management, and hence, succeeding in addressing many of the requirements of a modern power grid system while significantly increase its performance. Recently, wireless sensor networks (WSNs) have been recognized as a promising technology to achieve seamless, energy efficient, reliable, and low-cost remote monitoring and control in SG applications. In these systems, the required information can be provided to electric utilities by wireless sensor systems to enable them to achieve high system efficiency. The real-time information gathered from these sensors can be analyzed to diagnose problems early and serve as a basis for taking remedial action. In this paper, first WSN-based SG applications have been explored along with their technical challenges. Then, design challenges and protocol objectives have been discussed for WSN-based SG applications. After exploring applications and design challenges, communication protocols for WSN-based SG applications have been explained in detail. Here, our goal is to elaborate on the role of WSNs for smart grid applications and to provide an overview of the most recent advances in MAC and routing protocols for WSNs in this timely and exciting field.