Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/206
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Author "Eryılmaz, Aytekin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article On Critical Buckling Loads of Columns under End Load Dependent on Direction(Hindawi Publishing Corporation, 2014) Başbük, Musa; Eryılmaz, Aytekin; Atay, Mehmet Tarik; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü; Atay, M.Tarık; 01. Abdullah Gül University; 02.01. Mühendislik Bilimleri; 02. Mühendislik FakültesiMost of the phenomena of various fields of applied sciences are nonlinear problems. Recently, various types of analytical approximate solution techniques were introduced and successfully applied to the nonlinear differential equations. One of the aforementioned techniques is the Homotopy analysis method (HAM). In this study, we applied HAM to find critical buckling load of a column under end load dependent on direction. We obtained the critical buckling loads and compared them with the exact analytic solutions in the literature.Article On Critical Buckling Loads of Euler Columns With Elastic End Restraints(HİTİT ÜNİVERSİTESİ, 2016) Başbük, Musa; Eryılmaz, Aytekin; Coşkun, Sefa B.; Atay, Mehmet Tarık; AGÜ, Mühendislik Fakültesi, Makine Mühendisliği Bölümü; Atay, Mehmet Tarık; 01. Abdullah Gül University; 02.01. Mühendislik Bilimleri; 02. Mühendislik FakültesiI n recent years, a great number of analytical approximate solution techniques have been introduced to find a solution to the nonlinear problems that arised in applied sciences. One of these methods is the homotopy analysis method (HAM). HAM has been successfully applied to various kinds of nonlinear differential equations. In this paper, HAM is applied to find buckling loads of Euler columns with elastic end restraints. The critical buckling loads obtained by using HAM are compared with the exact analytic solutions in the literature. Perfect match of the results veries that HAM can be used as an efficient, powerfull and accurate tool for buckling analysis of Euler columns with elastic end restraints.
