Mühendislik Fakültesi
Permanent URI for this communityhttps://hdl.handle.net/20.500.12573/30
Browse
Browsing Mühendislik Fakültesi by Author "Altintas, Yemliha"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 3Citation - Scopus: 3Excitonic Interaction Amongst InP/ZnS Salt Pellets(Royal Soc Chemistry, 2017) Altintas, Yemliha; Yazici, Ahmet Faruk; Unlu, Miray; Dadi, Seyma; Genc, Sinan; Mutlugun, Evren; 0000-0002-6909-723X; 0000-0003-2747-7856; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 02.07. Malzeme Bilimi ve Nanoteknoloji Mühendisliği; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikSalt matrix has recently been introduced as a promising robust platform for embedding colloidal quantum dots to provide them with photo stability for versatile applications. This work demonstrates the excitonic interaction amongst high efficiency colloidal InP/ZnS quantum dots embedded in a KCl salt matrix. By varying the donor acceptor ratio within the solid platform, 65% Forster Resonance Energy Transfer (FRET) efficiency was attained. Optimizing the donor : acceptor ratio, we demonstrated the first FRET-enabled Cd-free pellets for white light generation possessing a color rendering index (CRI) of 84.7, correlated color temperature (CCT) of 5347.5 K, and a high luminous efficacy of optical radiation value (LER) of 324.3 lm/W-opt. Our study of excitonic interactions within quantum dot-loaded salt matrices will open new possibilities for future versatile optoelectronic applications.Article Citation - WoS: 6Citation - Scopus: 6Experimental Measurements of Some Thermophysical Properties of Solid CdSb Intermetallic in the Sn-Cd Ternary Alloy(Springer, 2016) Ozturk, Esra; Aksoz, Sezen; Altintas, Yemliha; Keslioglu, Kazum; Marasli, Necmettin; 0000-0002-1993-2655; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Altintas, Yemliha; 01. Abdullah Gül UniversityThe equilibrated grain boundary groove shapes of solid CdSb in equilibrium with Sn-Cd-Sb eutectic liquid were observed from a quenched sample by using a radial heat flow apparatus. The Gibbs-Thomson coefficient, solid-liquid interfacial energy and grain boundary energy of the solid CdSb intermetallic were determined from the observed grain boundary groove shapes. The thermal conductivity of the eutectic solid and the thermal conductivity ratio of eutectic liquid to the eutectic solid in the Sn-35.8 at.%Cd-6.71 at.%Sb eutectic alloy at its eutectic melting temperature were also measured with a radial heat flow apparatus and a Bridgman-type growth apparatus, respectively.Article Citation - WoS: 43Citation - Scopus: 45Highly Efficient Cd-Free Alloyed Core/Shell Quantum Dots With Optimized Precursor Concentrations(Amer Chemical Soc, 2016) Altintas, Yemliha; Talpur, Mohammad Younis; Unlu, Miray; Mutlugun, Evren; AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü; Mutlugun, Evren; Altintas, Yemliha; Talpur, Mohammad Younis; Unlu, Miray; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik Mühendisliği; 04. Yaşam ve Doğa Bilimleri Fakültesi; 04.01. BiyomühendislikThe chemical composition, the emission spectral bandwidth, and photoluminescence quantum yield of a semiconductor quantum dot (QD) play an important role in the assessment of the performance of the applications related to the quantum dots. Quantum dots based on environmentally friendly compositions with high optical performance have been in demand for high-end technological applications. In this work, we propose and demonstrate a detailed synthesis approach for environmentally friendly and highly efficient InPZnS alloy/ZnS shell quantum dots. Following a systematic study of the ratio and type of the precursors involved, we achieved alloyed core shell InPZnS/ZnS QDs with tunable emission across the visible spectrum, having a record quantum efficiency up to 78% along with a full width at half-maximum as narrow as 45 nm. The effect of the systematic shell growth has been further investigated using time-resolved photoluminescence characterizations along with the observation of the suppression of the nonradiative decay channels, with the photoluminescence lifetime prolonged from 20.3 to 50.4 ns. The development of highly efficient and environmentally friendly QDs will pave the way for robust, sustainable optoelectronic applications.