Veri Bilimi Anabilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/220
Browse
Browsing Veri Bilimi Anabilim Dalı Tez Koleksiyonu by Author "Madenoğlu, Nazlınur"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Master Thesis Makine Öğrenmesi Teknikleri Kullanarak Moda E-Ticaret Sektöründe Müşteri Segmentasyonu(2025) Madenoğlu, Nazlınur; Güven, Faruk; 01. Abdullah Gül UniversityTeknolojinin çok hızlı geliştiği günümüzde internet kullanımı da orantılı olarak artmaktadır. Bu değişim markaların e-ticaret sektörüne önem verdiğini ortaya koymuştur. E-ticaretin önemi markaların lehinedir çünkü şirketlerin bazı sabit giderlerinde azalmalar olmuştur. Online alışverişin artmasıyla birlikte müşterilerin kişisel analizleri de yapılabilmektedir. Müşteri ilişkileri yönetimi (CRM) önem kazanmıştır. Müşteri odaklı pazarlama için müşterileri segmentlere ayırmak gerekmektedir. Müşteri segmentasyonu yaygın olarak kullanılan bir analiz biçimidir. Her bir müşterinin ilgi ve motivasyonlarını derinlemesine anlamak için artan bir talep vardır. Bu anlayışı elde etmek için yaygın olarak kullanılan bir yöntem olan segmentasyon son yıllarda sürekli olarak iyileştirilmektedir. Bu makale çeşitli segmentasyon yöntemlerinin ve bunların mevcut gelişim durumlarının iyi yapılandırılmış bir genel görünümünü sunmayı amaçlamaktadır. Bu çalışmada müşteri segmentasyonu için RFM (Recency, Frequency, Monetary) analizi kullanılmıştır. Müşteriler son alışveriş zamanı, alışveriş sıklığı ve toplam harcamalarına göre puanlanarak segmentlere ayrılmıştır. K-Means ile dört müşteri grubu oluşturulup her bir segmentin değerleri analiz edilmiştir. Churn oranı analizi ile 90 gün boyunca alışveriş yapmayan müşteriler kayıp olarak belirlenmiştir. Churn tahmini, makine 3 öğrenmesi tekniği kullanılarak LightGBM modeli ile yapılmıştır. Ayrıca, Ridge Regresyonu makine öğrenmesi tekniği kullanılarak Tahmini CLV modeli geliştirilmiştir. Doğruluk oranı artırılarak düşük, orta ve yüksek CLV segmentleri oluşturulmuştur. Sonuç olarak, müşteri ilişkilerini optimize etmek ve gelirleri artırmak için RFM analizi, K-Means ve CLV tahmini kullanılmıştır. Özel bir markanın e-ticaret verileri makine öğrenmesi teknikleri kullanılarak analiz edilmiştir. Günümüzde, hesaplama gücünde artış ve makine öğrenmesi/yapay zeka algoritmalarında hızlı gelişmeler yaşanmaktadır. Bu durum son zamanlarda daha gelişmiş tekniklerin uygulanmasına olanak sağlamıştır.
