Makine Öğrenmesi Teknikleri Kullanarak Moda E-Ticaret Sektöründe Müşteri Segmentasyonu

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Teknolojinin çok hızlı geliştiği günümüzde internet kullanımı da orantılı olarak artmaktadır. Bu değişim markaların e-ticaret sektörüne önem verdiğini ortaya koymuştur. E-ticaretin önemi markaların lehinedir çünkü şirketlerin bazı sabit giderlerinde azalmalar olmuştur. Online alışverişin artmasıyla birlikte müşterilerin kişisel analizleri de yapılabilmektedir. Müşteri ilişkileri yönetimi (CRM) önem kazanmıştır. Müşteri odaklı pazarlama için müşterileri segmentlere ayırmak gerekmektedir. Müşteri segmentasyonu yaygın olarak kullanılan bir analiz biçimidir. Her bir müşterinin ilgi ve motivasyonlarını derinlemesine anlamak için artan bir talep vardır. Bu anlayışı elde etmek için yaygın olarak kullanılan bir yöntem olan segmentasyon son yıllarda sürekli olarak iyileştirilmektedir. Bu makale çeşitli segmentasyon yöntemlerinin ve bunların mevcut gelişim durumlarının iyi yapılandırılmış bir genel görünümünü sunmayı amaçlamaktadır. Bu çalışmada müşteri segmentasyonu için RFM (Recency, Frequency, Monetary) analizi kullanılmıştır. Müşteriler son alışveriş zamanı, alışveriş sıklığı ve toplam harcamalarına göre puanlanarak segmentlere ayrılmıştır. K-Means ile dört müşteri grubu oluşturulup her bir segmentin değerleri analiz edilmiştir. Churn oranı analizi ile 90 gün boyunca alışveriş yapmayan müşteriler kayıp olarak belirlenmiştir. Churn tahmini, makine 3 öğrenmesi tekniği kullanılarak LightGBM modeli ile yapılmıştır. Ayrıca, Ridge Regresyonu makine öğrenmesi tekniği kullanılarak Tahmini CLV modeli geliştirilmiştir. Doğruluk oranı artırılarak düşük, orta ve yüksek CLV segmentleri oluşturulmuştur. Sonuç olarak, müşteri ilişkilerini optimize etmek ve gelirleri artırmak için RFM analizi, K-Means ve CLV tahmini kullanılmıştır. Özel bir markanın e-ticaret verileri makine öğrenmesi teknikleri kullanılarak analiz edilmiştir. Günümüzde, hesaplama gücünde artış ve makine öğrenmesi/yapay zeka algoritmalarında hızlı gelişmeler yaşanmaktadır. Bu durum son zamanlarda daha gelişmiş tekniklerin uygulanmasına olanak sağlamıştır.
In today's world where technology is developing very rapidly, internet usage is also increasing proportionally. This change has revealed that brands attach importance to the sector. The significance of e-commerce is to the advantage of brands because there have been decreases in some fixed expenses of companies. With the increase in online shopping, personal analyses of customers can also be made by customer relationship management (CRM). It is necessary to divide customers into segments for customer-oriented marketing. Customer segmentation is a widely used form of analysis. There is an increasing demand to develop a deep awareness of individual customer needs and desires. Segmentation, a commonly utilized method for achieving this understanding, has undergone continuous refinement in recent years. This study targets to present a detailed analysis of various segmentation approaches and their evolution. In this study, RFM (Recency, Frequency, Monetary) analysis was used for segmenting the customers. Customers were divided into segments by scoring them on the last shopping time, shopping frequency and total spending. Four customer groups were created with K-means and the values of each segment were analyzed. Churn rate analysis determined customers who did not shop for 90 days as lost. Churn estimation was performed with the LightGBM model using the machine learning technique. In addition, the Predictive CLV (customer lifetime value) model was developed using the 1 machine learning technique Ridge Regression. The accuracy rate was increased and low, medium and high CLV segments were created. As a result; RFM , K-means and CLV estimation were used to optimize customer relationships and increase revenues. E-commerce data of a private brand was analyzed using machine learning techniques. Nowadays, there is an increase in computing power and rapid developments in machine learning/artificial intelligence algorithms. This has recently enabled the application of more advanced techniques.

Description

Keywords

Yönetim Bilişim Sistemleri, Management Information Systems

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

74
Google Scholar Logo
Google Scholar™

Sustainable Development Goals

2

ZERO HUNGER
ZERO HUNGER Logo

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

17

PARTNERSHIPS FOR THE GOALS
PARTNERSHIPS FOR THE GOALS Logo