PubMed İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/397
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu by Author "0000-0001-7686-6298"
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article Comparative analysis of machine learning approaches for predicting respiratory virus infection and symptom severity(PEERJ INC, 2023) Aydin, Zafer; Isik, Yunus Emre; 0000-0001-7686-6298; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Aydin, ZaferRespiratory diseases are among the major health problems causing a burden on hospitals. Diagnosis of infection and rapid prediction of severity without time-consuming clinical tests could be beneficial in preventing the spread and progression of the disease, especially in countries where health systems remain incapable. Personalized medicine studies involving statistics and computer technologies could help to address this need. In addition to individual studies, competitions are also held such as Dialogue for Reverse Engineering Assessment and Methods (DREAM) challenge which is a community-driven organization with a mission to research biology, bioinformatics, and biomedicine. One of these competitions was the Respiratory Viral DREAM Challenge, which aimed to develop early predictive biomarkers for respiratory virus infections. These efforts are promising, however, the prediction performance of the computational methods developed for detecting respiratory diseases still has room for improvement. In this study, we focused on improving the performance of predicting the infection and symptom severity of individuals infected with various respiratory viruses using gene expression data collected before and after exposure. The publicly available gene expression dataset in the Gene Expression Omnibus, named GSE73072, containing samples exposed to four respiratory viruses (H1N1, H3N2, human rhinovirus (HRV), and respiratory syncytial virus (RSV)) was used as input data. Various preprocessing methods and machine learning algorithms were implemented and compared to achieve the best prediction performance. The experimental results showed that the proposed approaches obtained a prediction performance of 0.9746 area under the precision-recall curve (AUPRC) for infection (i.e., shedding) prediction (SC-1), 0.9182 AUPRC for symptom class prediction (SC-2), and 0.6733 Pearson correlation for symptom score prediction (SC-3) by outperforming the best leaderboard scores of Respiratory Viral DREAM Challenge (a 4.48% improvement for SC-1, a 13.68% improvement for SC-2, and a 13.98% improvement for SC-3). Additionally, over-representation analysis (ORA), which is a statistical method for objectively determining whether certain genes are more prevalent in pre-defined sets such as pathways, was applied using the most significant genes selected by feature selection methods. The results show that pathways associated with the ‘adaptive immune system’ and ‘immune disease’ are strongly linked to pre-infection and symptom development. These findings contribute to our knowledge about predicting respiratory infections and are expected to facilitate the development of future studies that concentrate on predicting not only infections but also the associated symptoms.Article An effective colorectal polyp classification for histopathological images based on supervised contrastive learning(ELSEVIER, 2024) Yengec-Tasdemir, Sena Busra; Aydin, Zafer; Akay, Ebru; Dogan, Serkan; Yilmaz, Bulent; 0000-0001-7686-6298; 0000-0003-2954-1217; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Aydin, Zafer; Yilmaz, BulentEarly detection of colon adenomatous polyps is pivotal in reducing colon cancer risk. In this context, accurately distinguishing between adenomatous polyp subtypes, especially tubular and tubulovillous, from hyperplastic variants is crucial. This study introduces a cutting-edge computer-aided diagnosis system optimized for this task. Our system employs advanced Supervised Contrastive learning to ensure precise classification of colon histopathology images. Significantly, we have integrated the Big Transfer model, which has gained prominence for its exemplary adaptability to visual tasks in medical imaging. Our novel approach discerns between in-class and out-of-class images, thereby elevating its discriminatory power for polyp subtypes. We validated our system using two datasets: a specially curated one and the publicly accessible UniToPatho dataset. The results reveal that our model markedly surpasses traditional deep convolutional neural networks, registering classification accuracies of 87.1% and 70.3% for the custom and UniToPatho datasets, respectively. Such results emphasize the transformative potential of our model in polyp classification endeavors.Article An effective colorectal polyp classification for histopathological images based on supervised contrastive learning(Elsevier, 2024) Yengec-Tasdemir,Sena Busra; Aydin,Zafer; Akay,Ebru; Doğan,Serkan; Yilmaz,Bulent; 0000-0001-7686-6298; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; Aydın, Zafer; Yilmaz, BulentEarly detection of colon adenomatous polyps is pivotal in reducing colon cancer risk. In this context, accurately distinguishing between adenomatous polyp subtypes, especially tubular and tubulovillous, from hyperplastic variants is crucial. This study introduces a cutting-edge computer-aided diagnosis system optimized for this task. Our system employs advanced Supervised Contrastive learning to ensure precise classification of colon histopathology images. Significantly, we have integrated the Big Transfer model, which has gained prominence for its exemplary adaptability to visual tasks in medical imaging. Our novel approach discerns between in-class and out-of-class images, thereby elevating its discriminatory power for polyp subtypes. We validated our system using two datasets: a specially curated one and the publicly accessible UniToPatho dataset. The results reveal that our model markedly surpasses traditional deep convolutional neural networks, registering classification accuracies of 87.1% and 70.3% for the custom and UniToPatho datasets, respectively. Such results emphasize the transformative potential of our model in polyp classification endeavorsArticle IGPRED-MultiTask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility(IEEE COMPUTER SOC, 2023) Gormez, Yasin; Aydin, Zafer; 0000-0001-7686-6298; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Aydin, ZaferProtein secondary structure, solvent accessibility and torsion angle predictions are preliminary steps to predict 3D structure of a protein. Deep learning approaches have achieved significant improvements in predicting various features of protein structure. In this study, IGPRED-Multitask, a deep learning model with multi task learning architecture based on deep inception network, graph convolutional network and a bidirectional long short-term memory is proposed. Moreover, hyper-parameters of the model are fine-tuned using Bayesian optimization, which is faster and more effective than grid search. The same benchmark test data sets as in the OPUS-TASS paper including TEST2016, TEST2018, CASP12, CASP13, CASPFM, HARD68, CAMEO93, CAMEO93_HARD, as well as the train and validation sets, are used for fair comparison with the literature. Statistically significant improvements are observed in secondary structure prediction on 4 datasets, in phi angle prediction on 2 datasets and in psi angel prediction on 3 datasets compared to the state-of-the-art methods. For solvent accessibility prediction, TEST2016 and TEST2018 datasets are used only to assess the performance of the proposed model.Article Improved classification of colorectal polyps on histopathological images with ensemble learning and stain normalization(ELSEVIER IRELAND, 2023) Yengec-Tasdemir, Sena Busra; Aydin, Zafer; Akay, Ebru; Dogan, Serkan; Yilmaz, Bulent; 0000-0001-8322-4832; 0000-0001-7686-6298; 0000-0003-2954-1217; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Yengec-Tasdemir, Sena Busra; Aydin, Zafer; Yilmaz, BulentBackground and Objective: Early detection of colon adenomatous polyps is critically important because correct detection of it significantly reduces the potential of developing colon cancers in the future. The key challenge in the detection of adenomatous polyps is differentiating it from its visually similar counterpart, non-adenomatous tissues. Currently, it solely depends on the experience of the pathologist. To assist the pathologists, the objective of this work is to provide a novel non-knowledge-based Clinical Decision Support System (CDSS) for improved detection of adenomatous polyps on colon histopathology images. Methods: The domain shift problem arises when the train and test data are coming from different distributions of diverse settings and unequal color levels. This problem, which can be tackled by stain normalization techniques, restricts the machine learning models to attain higher classification accuracies. In this work, the proposed method integrates stain normalization techniques with ensemble of competitively accurate, scalable and robust variants of CNNs, ConvNexts. The improvement is empirically analyzed for five widely employed stain normalization techniques. The classification performance of the proposed method is evaluated on three datasets comprising more than 10k colon histopathology images. Results: The comprehensive experiments demonstrate that the proposed method outperforms the stateof-the-art deep convolutional neural network based models by attaining 95% classification accuracy on the curated dataset, and 91.1% and 90% on EBHI and UniToPatho public datasets, respectively. Conclusions: These results show that the proposed method can accurately classify colon adenomatous polyps on histopathology images. It retains remarkable performance scores even for different datasets coming from different distributions. This indicates that the model has a notable generalization ability. (c) 2023 Elsevier B.V. All rights reserved.