PubMed İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/397
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu by Author "0000-0001-5312-4742"
Now showing 1 - 9 of 9
- Results Per Page
- Sort Options
Article Berberine-containing natural-medicine with boiled peanut-OIT induces sustained peanut-tolerance associated with distinct microbiota signature(FRONTIERS MEDIA SA, 2023) Srivastava, Kamal; Cao, Mingzhuo; Fidan, Ozkan; Shi, Yanmei; Yang, Nan; Nowak-Wegrzyn, Anna; Miao, Mingsan; Zhan, Jixun; Sampson, Hugh A.; Li, Xiu-Min; 0000-0001-5312-4742; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, OzkanBackgroundGut microbiota influence food allergy. We showed that the natural compound berberine reduces IgE and others reported that BBR alters gut microbiota implying a potential role for microbiota changes in BBR function. ObjectiveWe sought to evaluate an oral Berberine-containing natural medicine with a boiled peanut oral immunotherapy (BNP) regimen as a treatment for food allergy using a murine model and to explore the correlation of treatment-induced changes in gut microbiota with therapeutic outcomes. MethodsPeanut-allergic (PA) mice, orally sensitized with roasted peanut and cholera toxin, received oral BNP or control treatments. PA mice received periodic post-therapy roasted peanut exposures. Anaphylaxis was assessed by visualization of symptoms and measurement of body temperature. Histamine and serum peanut-specific IgE levels were measured by ELISA. Splenic IgE(+)B cells were assessed by flow cytometry. Fecal pellets were used for sequencing of bacterial 16S rDNA by Illumina MiSeq. Sequencing data were analyzed using built-in analysis platforms. ResultsBNP treatment regimen induced long-term tolerance to peanut accompanied by profound and sustained reduction of IgE, symptom scores, plasma histamine, body temperature, and number of IgE(+) B cells (p <0.001 vs Sham for all). Significant differences were observed for Firmicutes/Bacteroidetes ratio across treatment groups. Bacterial genera positively correlated with post-challenge histamine and PN-IgE included Lachnospiraceae, Ruminococcaceae, and Hydrogenanaerobacterium (all Firmicutes) while Verrucromicrobiacea. Caproiciproducens, Enterobacteriaceae, and Bacteroidales were negatively correlated. ConclusionsBNP is a promising regimen for food allergy treatment and its benefits in a murine model are associated with a distinct microbiota signature.Article Can mesenchymal stem/stromal cells and their secretomes combat bacterial persisters?(SPRINGER, 2023) Bicer-Çalışkan, Mesude; Fidan, Ozkan; 0000-0001-5312-4742; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Bicer-Çalışkan, Mesude; Fidan, OzkanThe increasing number of life-threatening infections caused by persister bacteria is associated with various issues, including antimicrobial resistance and biofilm formation. Infections due to persister cells are often difficult to suppress without the use of last-resort antibiotics. Throughout the world, bacterial persistence and resistance create an unmet clinical demand for the exploration of newly introduced therapeutic approaches. Mesenchymal stem / stromal cells (MSCs) have an antimicrobial activity to protect against bacterial infections, including those caused by bacterial persisters. MSCs have substantial potential to secrete antimicrobial peptides (AMPs), including cathelicidin, beta-defensins, lipocalin-2, hepcidin, indoleamine 2,3-dioxygenase (IDO), cysteine proteases, and inducible nitric oxide synthases (iNOS). MSCs possess the potential to contribute to innate immunity by regulating the immune response. Recently, MSCs and their secreted components have been reported to improve antimicrobial activity. Bactericidal activity by MSCs and their secretomes has been shown to be mediated in part by the secretion of AMPs. Even though they were discovered more than 80 years ago, therapeutic options for persisters are restricted, and there is an urgent need for alternative treatment regimens. Hence, this review intends to critically assess the current literature on the effects of MSCs and their secretomes on persister bacteria. MSCs and their secretome-based therapies could be preferred as an up-and-coming approach to reinforce the antimicrobial efficiency in persister infections.Article Discovery of a C-S lyase inhibitor for the prevention of human body malodor formation: tannic acid inhibits the thioalcohol production in Staphylococcus hominis(SPRINGER NATURE LINK, 2025) Fidan, Ozkan; Karipcin, Ayse Doga; Kose, Ayse Hamide; Anaz, Ayse; Demirsoy, Beyza Nur; Arslansoy, Nuriye; Sun, Lei; Mujwar, Somdutt; 0000-0001-5312-4742; 0009-0005-7132-842X; 0009-0008-5514-8711; 0000-0003-4037-5475; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, Ozkan; Karipcin, Ayse Doga; Kose, Ayse Hamide; Anaz, Ayse; Demirsoy, Beyza Nur; Arslansoy, NuriyeHuman body odor is a result of the bacterial biotransformation of odorless precursor molecules secreted by the underarm sweat glands. In the human axilla, Staphylococcus hominis is the predominant bacterial species responsible for the biotransformation process of the odorless precursor molecule into the malodorous 3M3SH by two enzymes, a dipeptidase and a specific C-S lyase. The current solutions for malodor, such as deodorants and antiperspirants are known to block the apocrine glands or disrupt the skin microbiota. Additionally, these chemicals endanger both the environment and human health, and their long-term use can influence the function of sweat glands. Therefore, there is a need for the development of alternative, environmentally friendly, and natural solutions for the prevention of human body malodor. In this study, a library of secondary metabolites from various plants was screened to inhibit the C-S lyase, which metabolizes the odorless precursor sweat molecules, through molecular docking and molecular dynamics (MD) simulation. In silico studies revealed that tannic acid had the strongest affinity towards C-S lyase and was stably maintained in the binding pocket of the enzyme during 100-ns MD simulation. We found in the in vitro biotransformation assays that 1 mM tannic acid not only exhibited a significant reduction in malodor formation but also had quite low growth inhibition in S. hominis, indicating the minimum inhibitory effect of tannic acid on the skin microflora. This study paved the way for the development of a promising natural C-S lyase inhibitor to eliminate human body odor and can be used as a natural deodorizing molecule after further in vivo analysis.Article Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS‑CoV‑2 through computational drug repurposing(SPRINGER, VAN GODEWIJCKSTRAAT 30, 3311 GZ DORDRECHT, NETHERLANDS, 2022) Fidan, Özkan; Mujwar, Somdutt; Kciuk, Mateusz; 0000-0001-5312-4742; 0000-0002-8616-3825; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, ÖzkanSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been signifcantly paralyzing the societies, economies and health care systems around the globe. The mutations on the genome of SARS-CoV-2 led to the emergence of new variants, some of which are classifed as “variant of concern” due to their increased transmissibility and better viral ftness. The Omicron variant, as the latest variant of concern, dominated the current COVID-19 cases all around the world. Unlike the previous variants of concern, the Omicron variant has 15 mutations on the receptor-binding domain of spike protein and the changes in the key amino acid residues of S protein can enhance the binding ability of the virus to hACE2, resulting in a signifcant increase in the infectivity of the Omicron variant. Therefore, there is still an urgent need for treatment and prevention of variants of concern, particularly for the Omicron variant. In this study, an in silico drug repurposing was conducted through the molecular docking of 2890 FDA-approved drugs against the mutant S protein of SARS-CoV-2 for Omicron variant. We discovered promising drug candidates for the inhibition of alarming Omicron variant such as quinestrol, adapalene, tamibarotene, and dihydrotachysterol. The stability of ligands complexed with the mutant S protein was confrmed using MD simulations. The lead compounds were further evaluated for their potential use and side efects based on the current literature. Particularly, adapalene, dihydrotachysterol, levocabastine and bexarotene came into prominence due to their non-interference with the normal physiological processes. Therefore, this study suggests that these approved drugs can be considered as drug candidates for further in vitro and in vivo studies to develop new treatment options for the Omicron variant of SARS-CoV-2Article Draft genome of carotenoid-producing endophytic Pseudomonas sp. 102515 from Taxus chinensis(American Society for Microbiology, 2024) Fidan, Ozkan; 0000-0001-5312-4742; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, OzkanHere, we report the draft genome sequence of endophytic Pseudomonas sp. 102515 isolated from Taxus chinensis collected from Logan, UT, USA. The genome is composed of 36 contigs and around 4.9 Mbp in size. The GC content is 66% with an N50 length of 918.9 kbp and L50 count of 2.Article Editorial: Microbial production of medicinally important agents(FRONTIERS MEDIA SA, 2023) Zeng, Jia; Zhan, Jixun; Qiao, Xue; Fidan, Ozkan; 0000-0001-5312-4742; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, OzkanHarnessing microbial systems as bio-factories for the production of medically significant agents presents a thriving avenue in pharmaceutical research. From manufacturing natural products, including potent secondary metabolites, to the sophisticated engineering of recombinant proteins, microbial production’s contributions are manifold (Katz and Baltz, 2016). A salient trend is the rapid evolution of synthetic and molecular biology tools, which substantially enhance our capacity to manipulate microbial metabolism (Keasling, 2012; Ko et al., 2020). Furthermore, refinements in bioprocessing strategies have significantly improved the overall yield of microbial products, emphasizing the cost-effectiveness and efficiency of microbial production (Garcia-Ochoa and Gomez, 2009; Sharma et al., 2020). These advancements, in tandem with predictive technologies such as machine learning for optimal microbial strain selection and fermentation condition prediction, showcase this field’s innovative trajectory.Article In Silico Analysis of Bacteriocins from Lactic Acid Bacteria Against SARS-CoV-2(SPRINGERONE NEW YORK PLAZA, SUITE 4600 , NEW YORK, NY 10004, UNITED STATES, 2021) Erol, Ismail; Kotil, Seyfullah Enes; Fidan, Ozkan; Yetiman, Ahmet E.; Durdagi, Serdar; Ortakci, Fatih; 0000-0003-1319-0854; 0000-0001-5312-4742; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, Ozkan; Ortakci, FatihThe COVID-19 pandemic caused by a novel coronavirus (SARS-CoV-2) is a serious health concern in the twenty-first century for scientists, health workers, and all humans. The absence of specific biotherapeutics requires new strategies to prevent the spread and prophylaxis of the novel virus and its variants. The SARS-CoV-2 virus shows pathogenesis by entering the host cells via spike protein and Angiotensin-Converting Enzyme 2 receptor protein. Thus, the present study aims to compute the binding energies between a wide range of bacteriocins with receptor-binding domain (RBD) on spike proteins of wild type (WT) and beta variant (lineage B.1.351). Molecular docking analyses were performed to evaluate binding energies. Upon achieving the best bio-peptides with the highest docking scores, further molecular dynamics (MD) simulations were performed to validate the structure and interaction stability. Protein-protein docking of the chosen 22 biopeptides with WT-RBD showed docking scores lower than -7.9 kcal/mol. Pediocin PA-1 and salivaricin P showed the lowest (best) docking scores of - 12 kcal/mol. Pediocin PA-1, salivaricin B, and salivaricin P showed a remarkable increase in the double mutant's predicted binding affinity with -13.8 kcal/mol, -13.0 kcal/mol, and -12.5 kcal/mol, respectively. Also, a better predicted binding affinity of pediocin PA-1 and salivaricin B against triple mutant was observed compared to the WT. Thus, pediocin PA-1 binds stronger to mutants of the RBD, particularly to double and triple mutants. Salivaricin B showed a better predicted binding affinity towards triple mutant compared to WT, showing that it might be another bacteriocin with potential activity against the SARS-CoV-2 beta variant. Overall, pediocin PA-1, salivaricin P, and salivaricin B are the most promising candidates for inhibiting SARS-CoV-2 (including lineage B.1.351) entrance into the human cells. These bacteriocins derived from lactic acid bacteria hold promising potential for paving an alternative way for treatment and prophylaxis of WT and beta variants.Article In silico evaluation of food-derived carotenoids against SARS-CoV-2 drug targets: Crocin is a promising dietary supplement candidate for COVID-19(WILEY111 RIVER ST, HOBOKEN 07030-5774, NJ, 2022) Mujwar, Somdutt; Sun, Lei; Fidan, Ozkan; 0000-0003-4037-5475; 0000-0002-5024-4164; 0000-0001-5312-4742; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, ÖzkanThe current COVID-19 pandemic is severely threatening public healthcare systems around the globe. Some supporting therapies such as remdesivir, favipiravir, and ivermectin are still under the process of a clinical trial, it is thus urgent to find alternative treatment and prevention options for SARS-CoV-2. In this regard, although many natural products have been tested and/or suggested for the treatment and prophylaxis of COVID-19, carotenoids as an important class of natural products were underexplored. The dietary supplementation of some carotenoids was already suggested to be potentially effective in the treatment of COVID-19 due to their strong antioxidant properties. In this study, we performed an in silico screening of common food-derived carotenoids against druggable target proteins of SARS-CoV-2 including main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase. Molecular docking results revealed that some of the carotenoids had low binding energies toward multiple receptors. Particularly, crocin had the strongest binding affinity (-10.5 kcal/mol) toward the replication complex of SARS-CoV-2 and indeed possessed quite low binding energy scores for other targets as well. The stability of crocin in the corresponding receptors was confirmed by molecular dynamics simulations. Our study, therefore, suggests that carotenoids, especially crocin, can be considered an effective alternative therapeutics and a dietary supplement candidate for the prophylaxis and treatment of SARS-CoV-2. Practical applications In this study, food-derived carotenoids as dietary supplements have the potential to be used for the prophylaxis and/or treatment of SARS-CoV-2. Using in silico techniques, we aimed at discovering food-derived carotenoids with inhibitory effects against multiple druggable sites of SARS-CoV-2. Molecular docking experiments against main protease, helicase, replication complex, spike protein and its mutants for the recent variants of concern, and ADP-ribose phosphatase resulted in a few carotenoids with multitarget inhibitory effects. Particularly, crocin as one of the main components of saffron exhibited strong binding affinities to the multiple drug targets including main protease, helicase, replication complex, mutant spike protein of lineage B.1.351, and ADP-ribose phosphatase. The stability of the crocin complexed with these drug targets was further confirmed through molecular dynamics simulations. Overall, our study provides the preliminary data for the potential use of food-derived carotenoids, particularly crocin, as dietary supplements in the prevention and treatment of COVID-19.Article Inhibition of pathologic immunoglobulin E in food allergy by EBF-2 and active compound berberine associated with immunometabolism regulation(FRONTIERS MEDIA SA, 2023) Yang, Nan; Maskey, Anish R.; Srivastava, Kamal; Kim, Monica; Wang, Zixi; Musa, Ibrahim; Shi, Yanmei; Fidan, Ozkan; Wang, Julie; Dunkin, David; Chung, Danna; Zhan, Jixun; Miao, Mingsan; Sampson, Hugh A; Li, Xiu-Min; 0000-0001-5312-4742; AGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümü; Fidan, OzkanIntroductionFood allergy is a significant public health problem with limited treatment options. As Food Allergy Herbal Formula 2 (FAHF-2) showed potential as a food allergy treatment, we further developed a purified version named EBF-2 and identified active compounds. We investigated the mechanisms of EBF-2 on IgE-mediated peanut (PN) allergy and its active compound, berberine, on IgE production. MethodsIgE plasma cell line U266 cells were cultured with EBF-2 and FAHF-2, and their effects on IgE production were compared. EBF-2 was evaluated in a murine PN allergy model for its effect on PN-specific IgE production, number of IgE(+) plasma cells, and PN anaphylaxis. Effects of berberine on IgE production, the expression of transcription factors, and mitochondrial glucose metabolism in U266 cells were evaluated. ResultsEBF-2 dose-dependently suppressed IgE production and was over 16 times more potent than FAHF-2 in IgE suppression in U266 cells. EBF-2 significantly suppressed PN-specific IgE production (70%, p<0.001) and the number of IgE-producing plasma cells in PN allergic mice, accompanied by 100% inhibition of PN-induced anaphylaxis and plasma histamine release (p<0.001) without affecting IgG1 or IgG2a production. Berberine markedly suppressed IgE production, which was associated with suppression of XBP1, BLIMP1, and STAT6 transcription factors and a reduced rate of mitochondrial oxidation in an IgE-producing plasma cell line. ConclusionsEBF-2 and its active compound berberine are potent IgE suppressors, associated with cellular regulation of immunometabolism on IgE plasma cells, and may be a potential therapy for IgE-mediated food allergy and other allergic disorders.