Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/418
Browse
Browsing Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu by Author "Alan, İrfan"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Doctoral Thesis Su Altı Dalgıç Pompa Uygulamaları için Doğrudan Yol Vermeli Relüktans Motorunun Sistematik Olarak Tasarım Optimizasyonu ve Gerçeklemesi(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2022) Tekgün, Didem; Alan, İrfan; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı; 01. Abdullah Gül University; 02. Mühendislik Fakültesi; 02.05. Elektrik & Elektronik MühendisliğiConsidering the electric drive systems constitute roughly 40% of global energy production, improving electric machine efficiencies provides important nationwide and global scale advantages. Among the electric motors used in the industry, a major portion of them are pump motors used for pumping underground waters and petroleum products. Especially the motors for submersible pump applications run at very low-efficiency levels because of the motor design issues and wrong selection of motor-pump configurations. Due to the features like robustness, low cost, and line start capability, induction machines (IM) are generally the first choice for pump applications. However, IMs work with low efficiency, especially at low and medium power levels. Line start synchronous reluctance machines (LS-SynRM) come to the scene as a reasonable alternative by having the line start capability and not having rare earth permanent magnets as well. The working principle of these machines is a combination of a reluctance machine and an IM. In LS-SynRM, a rotor cage is inserted in the rotor for the machine to start with the line voltage, but the rotor copper losses become zero when the machine operates at synchronous speed. Moreover, SynRMs have higher power and torque density. In this thesis study, it is aimed to reduce the overall cost of the submersible water pump system by designing and optimizing a LS-SynRM as a submersible pump motor with higher efficiency compared to conventional IMs. Increasing the efficiency of the pump motor used in industry will improve the overall system performance. Accordingly, it lowers energy and maintenance costs, and easy process control will be achieved. This way, while reducing energy consumption nationwide significantly, not only the natural resources will be protected, but also huge amounts of money will be saved.