Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/418
Browse
Browsing Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu by Author "0000-0002-0336-4825"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
doctoralthesis.listelement.badge Time distributed classification of alzheimer's disease on MRI scans(Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü, 2024) Dündar, Mehmet Sait; 0000-0002-0336-4825; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim DalıThis thesis presents a comprehensive framework for studying Alzheimer's Disease (AD) progression by focusing on the classification of AD, Mild Cognitive Impairment (MCI), and Cognitively Normal (CN) individuals using advanced machine learning models that analyze changes in brain volumetrics over time through MRI scans. In the first phase of the research, MR images from the Alzheimer's Disease Neuroimaging Initiative database were utilized, which included sequences of 3-4 scans taken annually from 22 CN, 18 AD, and 20 MCI subjects. Key volumetric parameters such as cortical thickness and intracranial volumes were extracted using the CAT12 toolbox in SPM software. A novel classification method based on the rate of volumetric changes over time was employed, effectively capturing the progressive nature of neurological changes. This approach achieved accuracies of 82.5% in distinguishing AD from CN, 71% in differentiating MCI from AD, and 69% in separating MCI from CN, alongside a 55% accuracy in a three-way classification using random forest and support vector machines. Building on these initial insights, the second phase of the study significantly advanced the methodology by integrating a pre-trained 3D ResNet 101 CNN algorithm for initial spatial categorization of MRI scans, followed by the use of Long Short-Term Memory (LSTM) networks. These LSTMs processed the same sequences of 3-4 annual scans for each patient, enhancing the model's ability to analyze and interpret the temporal progression of volumetric changes. This sophisticated approach led to marked improvements in classification accuracy: 96.7% in differentiating AD from CN, 87.5% in distinguishing AD from MCI, and 86.4% in separating MCI from CN. The study effectively demonstrates a significant enhancement in capturing the temporal dynamics of AD progression.