Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/418
Browse
Browsing Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı Tez Koleksiyonu by Author "0000-0001-5523-4769"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
masterthesis.listelement.badge Developing high brightness quantum dot led devices(Abdullah Gül Üniversitesi / Fen Bilimleri Enstitüsü, 2023) Biçer, Ayşenur; 0000-0001-5523-4769; AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim DalıOptoelectronic devices are essential components of optical communication systems, internet and displays. Among these devices, in the category of light emitting diodes (LED), there are quantum dot LEDs (QLED) that emit light by employing quantum dots (QDs) and have rich optoelectronic properties such as varying emission wavelength associated with the its size and excellent brightness [1], [2]. In this thesis, we worked on transparent and solution processible QLEDs in three groups: Indium Phosphide (InP) QLEDs, Carbon Quantum Dot (CQD) LEDs and Cadmium Selenide (CdSe) QLEDs. In the InP study, a QLED was fabricated using InP-based QDs as the emitting layer to demonstrate the feasibility of these QDs. Results found a maximum external quantum efficiency (EQE) of 1.16% and brightness of 1039 cd/m2 . For the CQD LEDs, yellow emissive QDs were mixed systematically in Poly(9-vinylcarbazole) (PVK) as the host. A blue-to-white shift was observed in the CIE coordinate with varying ratios. From these, white luminescent devices were obtained with a maximum brightness of 774.3 cd/m2 and an EQE of 0.76%. High-brightness irradiation was obtained compared to other white-luminescent studies in the literature. In CdSe QLEDs, as a proof of concept, devices with a maximum brightness of 111,450 cd/m2 and an EQE of 15.08% were obtained. In these three works, devices with high brightness in their own categories were produced using both heavy metal and non-heavy metal QDs