Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/207
Browse
Browsing Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü Koleksiyonu by Author "0000-0001-5807-9944"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Electrochemical and Optical Multi-Detection of Escherichia coli Through Magneto-Optic Nanoparticles: A Pencil-on-Paper Biosensor(MDPI, 2024) Soysaldi, Furkan; Ekici, Derya Dincyurek; Soylu, Mehmet cagri; Mutlugun, Evren; 0000-0003-1120-5557; 0000-0001-5807-9944; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Ekici, Derya Dincyurek; Mutlugun, EvrenEscherichia coli (E. coli) detection suffers from slow analysis time and high costs, along with the need for specificity. While state-of-the-art electrochemical biosensors are cost-efficient and easy to implement, their sensitivity and analysis time still require improvement. In this work, we present a paper-based electrochemical biosensor utilizing magnetic core-shell Fe2O3@CdSe/ZnS quantum dots (MQDs) to achieve fast detection, low cost, and high sensitivity. Using electrochemical impedance spectroscopy (EIS) as the detection technique, the biosensor achieved a limit of detection of 2.7 x 10(2) CFU/mL for E. coli bacteria across a concentration range of 10(2)-10(8) CFU/mL, with a relative standard deviation (RSD) of 3.5781%. From an optical perspective, as E. coli concentration increased steadily from 10(4) to 10(7) CFU/mL, quantum dot fluorescence showed over 60% lifetime quenching. This hybrid biosensor thus provides rapid, highly sensitive E. coli detection with a fast analysis time of 30 min. This study, which combines the detection advantages of electrochemical and optical biosensor systems in a graphite-based paper sensor for the first time, has the potential to meet the needs of point-of-care applications. It is thought that future studies that will aim to examine the performance of the production-optimized, portable, graphite-based sensor system on real food samples, environmental samples, and especially medical clinical samples will be promising.Article Superior CdSe/ZnS@Fe2O3 Yolk-Shell Nanoparticles as Optically Active MRI** Contrast Agents(WILEY-V C H VERLAG GMBH, 2022) Ekici, Derya D.; Mutlugun, Evren; 0000-0003-3715-5594; 0000-0001-5807-9944; AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü; Mutlugün, Evren; D. Ekici, DeryaWe have developed a robust synthesis methodology for quantum dots (QDs) nanoparticles with magnetic properties designed for biomodal imaging. These nanocrsytlas consists of a semiconductor quantum dot core with engineered fluorescence, which is located in a paramagnetic iron oxide shell that acts as a magnetic resonance imaging (MRI) contrast agent. Yolk-shell CdSe/ZnS@Fe2O3 nanoparticles (NPs) are synthesized via sonochemical decomposition of iron pentacarbonyl (Fe(CO)(5)) using the oleylamine (OAm) as the ligand. The sonochemical synthesis method of magnetic fluorescent NPs that can be used as MRI contrast agents provided advantages such as improved quantum efficiency and homogeneous size distributions. It has been determined that the luminescence efficiency of quantum dots decreases in coatings that can be made at high temperatures by thermal decomposition. In order to eliminate the disadvantage of elevated temperatures, the sonochemical decomposition method, which allows coating at low temperatures, has been used. With this method, yolk-shell (CdSe/ZnS@Fe2O3) nanoparticles were produced with high photoluminescence quantum efficiency and homogeneous size distributions. The synthesis magnetic fluorescent NPs optimized was determined to have the injection temperature of Fe(CO)(5) at 60 degrees C, Fe(CO)(5)/CdSe@ZnS ratio 0.7, OAm/Fe(CO)(5) volume ratio 1.43 with an oxidation time 5 min. Under these conditions, the quantum efficiency was found to be 78 %, nanoparticle sizes between 11-14 nm and r(1) value was 0.199, r(2) value was 0.518 in MRI analysis. These optically active magnetic fluorescent nanoparticles as positive contrast agents (T1 weighted) are predicted to pave the way for the future of advanced bio-imaging systems.