FABRICATION OF NANOCOMPOSITE MEMBRANES AND THEIR APPLICATIONS IN OILY WASTEWATER TREATMENT

dc.contributor.author SAKİ, Seda
dc.contributor.department AGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümü en_US
dc.date.accessioned 2021-12-28T08:31:29Z
dc.date.available 2021-12-28T08:31:29Z
dc.date.issued 2017 en_US
dc.date.submitted 2017-07
dc.description.abstract Industrial oily wastewaters are generated by various industries such as steel, food, textile, leather, petrochemical and metal milling and should be treated before discharging natural environment due to its serious environmental problems. With this view, membrane separation processes have promote a significant development of novel and green technology for oily wastewater treatment due to its clear advantages, for instance, ease in operation, efficient separation, low energy consumption and cost. Specially microfiltration (MF) and ultrafiltration (UF) membranes are playing a more prominent role in the oily wastewater treatments because of many advantages like as stable effluent quality, small area requirement, no chemicals addition, high chemical oxygen demand (COD) removal and low energy need. But the main drawback of membrane processes is the fouling problem. To overcome this problem, many researchers effort fabrication of high performance of membrane with higher hydrophilicity and antifouling properties. In this study, flat-sheet PSF/PEI nanocomposite membranes using Al2O3 and CaCO3 nanoparticles were prepared by phase inversion method. The effect of Al2O3 and CaCO3 nanoparticles were investigated on the structural properties and filtration performance of the nanocomposite membranes. Prepared membranes were characterized with scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), contact angle, porosity, water flux, thermogravimetric analysis (TGA), atomic force microscope ii (AFM), X-ray diffraction (XRD), BSA rejection, tensile strength, and viscosity measurements. Membrane permeability performance and antifouling properties towards oil water emulsion separation of these new generation nanocomposite membranes were evaluated for synthetic and real industrial oily wastewater. The results showed that there is a great potential to use these nanocomposite membranes for oily water treatment with higher permeability and antifouling capacity. All Al2O3 and CaCO3 nanocomposite membranes reached higher oil rejection ratios over 90%. en_US
dc.identifier.uri https://hdl.handle.net/20.500.12573/1111
dc.language.iso eng en_US
dc.publisher Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü en_US
dc.relation.publicationcategory Tez en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject nanocomposite membrane en_US
dc.subject Al2O3 and CaCO3 nanoparticles en_US
dc.subject industrial oily wastewater en_US
dc.title FABRICATION OF NANOCOMPOSITE MEMBRANES AND THEIR APPLICATIONS IN OILY WASTEWATER TREATMENT en_US
dc.type masterThesis en_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
11-SEDA SAKİ.pdf
Size:
4.57 MB
Format:
Adobe Portable Document Format
Description:
Yüksek Lisans Tezi

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: