Emotion Detection Using Multivariate Synchrosqueezing Transform via 2D Circumplex Model

dc.contributor.author Ozel, Pinar
dc.contributor.author Akan, Aydin
dc.contributor.author Yilmaz, Bulent
dc.contributor.department AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü en_US
dc.date.accessioned 2021-05-20T11:00:04Z
dc.date.available 2021-05-20T11:00:04Z
dc.date.issued 2018 en_US
dc.description.abstract Emotion detection by utilizing signal processing methods is a challenging area. An open issue in emotional modeling is to obtain an optimum feature set to use for the classification process. This study proposes an approach for emotional state classification by the investigation of EEG signals via multivariate synchrosqueezing transform (MSST). MSST is a post -processing technique to compose a localized time -frequency representation yielding multivariate syncyrosqueezing coefficients. After obtaining these coefficients from EEG signals for 18 subjects from DEAP dataset, coefficients and self assessment -mannequins (SAM) labels of those subjects are used for emotional state classification by using support vector machines (SVM) nearest neighbor, decision tree, and ensemble methods. The accuracy rate is 70.6% for high valence high arousal (HVHA), 75.4% for low valence high arousal (LVHA), 77.8% for high valence low arousal (HVLA), and 77.2% for low valence low arousal (LVLA) cases using SVM. en_US
dc.description.sponsorship Biyomedikal Klinik Muhendisligi Dernegi; Izmir Katip Celebi Univ, Biyomedikal Muhendisligi Bolumu en_US
dc.identifier.isbn 978-1-5386-6852-8
dc.identifier.uri https://hdl.handle.net/20.500.12573/732
dc.language.iso eng en_US
dc.publisher IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA en_US
dc.relation.journal 2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO) en_US
dc.relation.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Multivariate Syncyrosqueezing Transform en_US
dc.subject Emotion Recognition en_US
dc.subject EEG en_US
dc.title Emotion Detection Using Multivariate Synchrosqueezing Transform via 2D Circumplex Model en_US
dc.type conferenceObject en_US

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: