Stacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimation

dc.contributor.author Akbas, Ayhan
dc.contributor.author Buyrukoglu, Selim
dc.contributor.authorID 0000-0002-6425-104X en_US
dc.contributor.department AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü en_US
dc.contributor.institutionauthor Akbas, Ayhan
dc.date.accessioned 2024-03-29T08:21:42Z
dc.date.available 2024-03-29T08:21:42Z
dc.date.issued 2023 en_US
dc.description.abstract In wireless sensor network projects, it is generally desired to cover the area to be monitored at a given cost and to achieve the maximum useful network lifetime. In the deployment of the wireless sensors, it is necessary to know in advance how many sensor nodes will be required, how much the distance between the nodes should be, etc., or what the transmit power level should be, etc. depending on the channel parameters of the area. This necessitates accurate calculation of variables such as maximum network lifetime, communication channel parameters, number of nodes to be used, and distance between nodes. As numbers reach to the order of hundreds, calculation tends to a NP hard problem to solve. At this point, we employed both single-based and stacked ensemble-based machine learning models to speed up the parameter estimations with highly accurate outcomes. Adaboost was superior over other models (Elastic Net, SVR) in single-based models. Stacked ensemble models achieved best results for the WSN parameter prediction compared to single-based models. en_US
dc.identifier.endpage 9748 en_US
dc.identifier.issue 8 en_US
dc.identifier.startpage 9739 en_US
dc.identifier.uri https://doi.org/10.1007/s13369-022-07365-5
dc.identifier.uri https://hdl.handle.net/20.500.12573/2056
dc.identifier.volume 48 en_US
dc.language.iso eng en_US
dc.publisher Institute for Ionics en_US
dc.relation.isversionof 10.1007/s13369-022-07365-5 en_US
dc.relation.journal Arabian Journal for Science and Engineering en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Wireless sensor networks en_US
dc.subject Machine learning en_US
dc.subject Parameter prediction en_US
dc.subject Stacked ensemble en_US
dc.subject Gradient boosting en_US
dc.title Stacking Ensemble Learning-Based Wireless Sensor Network Deployment Parameter Estimation en_US
dc.type article en_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
s13369-022-07365-5.pdf
Size:
770.89 KB
Format:
Adobe Portable Document Format
Description:
Makale Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: