Fabrication and novel applications of light-absorbing optoelectronic devices
dc.contributor.author | Savaş, Müzeyyen | |
dc.contributor.department | AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı | en_US |
dc.date.accessioned | 2022-12-14T12:38:31Z | |
dc.date.available | 2022-12-14T12:38:31Z | |
dc.date.issued | 2022 | en_US |
dc.date.submitted | 2022-08 | |
dc.description.abstract | Fabrication of optoelectronic devices relies on expensive, energy-consuming conventional tools including chemical vapor deposition, lithography, and metal evaporation. Developing an alternative technology would contribute to the efforts on achieving a sustainable optoelectronics technology. Keeping this in our focus, here we present a simple technique to fabricate visible photodetectors. These fully solutionprocessed and transparent metal-semiconductor-metal photodetectors employ silver nanowires (Ag NW) as the transparent electrodes replacing the indium-tin-oxide (ITO) commonly used in optoelectronic devices. By repeatedly spin coating Ag NW on a glass substrate followed by the coating of ZnO nanoparticles, we obtained a highly conductive transparent electrode reaching a sheet resistance of 95 Ω/□. The transmittance of the Ag NW-ZnO films was 84% at 450 nm while the transmittance of the ITO films was 90% at the same wavelength. Following the formation of the conductive film, we scratched it using a heated surgical blade to open a gap which is ~30 µm forming an insulating line. As the active layer, we drop-casted red-emitting CdSe/ZnS core-shell colloidal quantum dots (CQDs) onto this gap. These visible CQDbased photodetectors exhibited responsivities and detectivities up to 8.5 mA/W and 0.95x109 Jones, respectively. These proof-of-concept photodetectors show that the environmentally friendly, low-cost, and energy-saving technique presented here can be an alternative to conventional, high-cost, and energy-hungry techniques while fabricating light-harvesting devices | en_US |
dc.description.abstract | Optoelektronik cihazların üretimi, kimyasal buhar kaplama, litografi ve metal buharlaştırma dahil olmak üzere pahalı, enerji tüketen geleneksel araçlara dayanır. Alternatif bir teknolojinin geliştirilmesi, sürdürülebilir bir optoelektronik teknolojisine ulaşma çabalarına katkıda bulunacaktır. Bunu odak noktamızda tutarak, burada görünür fotodedektörleri imal etmek için basit bir teknik sunuyoruz. Bu tamamen çözelti ile işlenmiş ve şeffaf metal-yarı iletken-metal fotodedektörler, optoelektronik cihazlarda yaygın olarak kullanılan indiyum-kalay oksitin (ITO) yerini alan şeffaf elektrotlar olarak gümüş nanotelleri (Ag NW) kullanmıştır. Bir cam substrat üzerinde Ag NW'leri tekrar tekrar döndürerek kaplamayı takiben ZnO nanoparçacıklarının kaplanmasıyla, 95 Ω/□'lik bir tabaka direncine ulaşan oldukça iletken şeffaf bir elektrot elde edilmiştir. Ag NW-ZnO filmlerinin geçirgenliği 450 nm'de %84 iken, aynı dalga boyunda ITO filmlerinin geçirgenliği %90 olmuştur. İletken filmin oluşumunu takiben, bir yalıtım hattı oluşturan ~30 µm'lik bir boşluk açmak için ısıtılmış bir cerrahi bıçak kullanarak film çizilmiştir. Aktif katman olarak, bu boşluğa kırmızı yayan CdSe/ZnS çekirdekkabuk kolloidal kuantum noktalarını (KKN'ler) damlatılmıştır. Bu görünür KKN tabanlı fotodedektörler, sırasıyla 8.5 mA/W ve 0.95x109 Jones'a kadar duyarlılık ve algılama sergilemiştir. Bu kavram kanıtı fotodedektörler, burada sunulan çevre dostu, düşük maliyetli ve enerji tasarruflu tekniğin, ışık hasat eden cihazları üretirken geleneksel, yüksek maliyetli ve çok enerji tüketen tekniklere bir alternatif olabileceğini göstermektedir. | en_US |
dc.description.tableofcontents | TABLE OF CONTENTS 1. INTRODUCTION .................................................................................................... 1 2. PHOTODETECTORS ...............................................................................................................4 2.1 THE P-N JUNCTION PHOTODIODES............................................................................. 5 2.2 THE PIN PHOTODIODES ............................................................................................. 7 2.3 AVALANCHE PHOTODIDES........................................................................................ 8 2.4 SCHOTTKHY JUNCTION PHOTODIODES.................................................................... 10 2.5 COLLOIDAL QUANTUM DOT PHOTODIODES............................................................. 12 3. SILVER NANOWIRES (AG NW) ......................................................................................15 3.1 SILVER NANOWIRES AS TRANSPARENT ELECTRODES .............................................. 15 3.2 SYNTHESIS TECHNIQUES ........................................................................................ 16 3.2.1 Synthesis of Ag NW........................................................................................ 17 3.3 ELECTRICAL PROPERTIES OF AG NW THIN FILMS..................................................... 18 3.4 OPTICAL PROPERTIES OF AG NW THIN FILMS .......................................................... 20 4. ZINC OXIDE NANOPARTICLES (ZNO NP)...............................................................22 4.1 ZINC OXIDE NANOPARTICLES AS ADDITIVES FOR TRANSPARENT AND CONDUCTIVE AG NW FILM ................................................................................................................. 22 4.2 SYNTHESIS TECHNIQUES ........................................................................................ 22 4.2.1 Synthesis of ZnO NP and integration with Ag NW films............................... 23 4.3 OPTICAL PROPERTIES OF ZNO NP.......................................................................... 24 4.4 ELECTRICAL PROPERTIES OF ZNO NP.................................................................... 26 5. COLLOIDAL QUANTUM DOTS (CQDS).....................................................................28 5.1 COLLOIDAL QUANTUM DOTS FOR PHOTODETECTORS ............................................. 22 5.2 SYNTHESIS TECHNIQUES ........................................................................................ 32 5.2.1 Synthesis of CdSe/ZnS core/shell CQDs........................................................ 33 5.3 OPTICAL PROPERTIES OF THE CQDS ...................................................................... 34 6. FABRICATION OF SOLUTION PROCESSED CQD PHOTODETECTORS ............................................................................................................................................................35 6.1 SAMPLE FABRICATION ........................................................................................... 35 6.2 CHARACTERIZATION .............................................................................................. 38 6.3 RESULTS AND DISCUSSION..................................................................................... 39 7. CONCLUSIONS AND FUTURE PROSPECTS............................................................42 7.1 CONCLUSIONS ........................................................................................................ 42 7.2 SOCIETAL IMPACT AND CONTRIBUTION TO GLOBAL SUSTAINABILITY................... 43 7.3 FUTURE PROSPECTS ............................................................................................... 44 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/1420 | |
dc.language.iso | eng | en_US |
dc.publisher | Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü | en_US |
dc.relation.publicationcategory | Tez | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | colloidal quantum dot photodetectors | en_US |
dc.subject | zinc oxide nanoparticles | en_US |
dc.subject | silver nanowires | en_US |
dc.subject | sustainable fabrication | en_US |
dc.subject | sustainable optoelectronics | en_US |
dc.title | Fabrication and novel applications of light-absorbing optoelectronic devices | en_US |
dc.title.alternative | IŞIK EMİCİ OPTOELEKTRONİK CİHAZLARIN ÜRETİMİ VE YENİ UYGULAMALARI | en_US |
dc.type | masterThesis | en_US |