Malzemelerin Mekanik Özellikleri Üzerinde Hidrojenin Etkisi
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Bu çalışmada, hidrojenin farklı mekanik yükleme koşulları ve gerinim hızları altında alüminyum alaşımları ve hacim merkezli kübik (HMK) demir üzerindeki etkisini incelemektedir. İlk olarak, Al 7075'in hidrojen duyarlılığı, yavaş ve orta gerinim hızlarında yapılan çekme testleri ile değerlendirilmiştir. Sonuçlara göre, daha yüksek gerinim hızlarında hidrojen gevrekliği, yavaş gerinim hızlarına göre daha baskındır. Hidrojen gevrekliği mekanizması, düşük hızlarda hidrojenle desteklenen lokalize plastisite (HELP) iken, orta hızlarda HELP ve hidrojenle desteklenen ayrışmanın (HEDE) bir arada bulunması yönünde değişiklik göstermektedir. İkinci çalışmada, Al 5083'ün hidrojen duyarlılığı, balistik testler altında deneysel ve sayısal yöntemler kullanılarak incelenmiştir. Sonuçlara göre, artan deformasyon hızlarında HEDE'nin HELP üzerindeki baskınlığı artmaktadır. Sonlu elemanlar yöntemi, Johnson-Cook modeli ile birleştirilerek deneysel sonuçları doğrulamış ve balistik uygulamalarda hidrojenle yüklenmiş koşullar için öngörücü bir model sunmuştur. Son olarak, moleküler dinamik simülasyonları kullanılarak, hacim merkezli demirdeki kenar dislokasyon hareketliliği, geniş bir sıcaklık, hidrojen konsantrasyonu ve gerilme seviyesi aralığında değerlendirilmiş ve hidrojen duyarlılığı araştırılmıştır. Çalışmadan elde edilen bulgular sonucunda fenomenolojik hareketlilik yasaları önerilmiştir. Bu çalışmalar, hidrojenin metaller üzerindeki etkisini değişen mekanik koşullar altında anlamaya katkıda bulunarak, hidrojen maruziyetinin söz konusu olduğu mühendislik uygulamaları için önemli çıktılar sunmaktadır.
This study examines the hydrogen effect on the mechanical properties of aluminum alloys and body centered cubic iron under different loading conditions and strain rates. First, the hydrogen susceptibility of Al 7075 was evaluated under quasi-static and medium strain rates using tensile tests. According to the results, at greater strain rates, hydrogen embrittlement is more dominant compared to quasi-static strain rates. The hydrogen embrittlement mechanism is shifting from hydrogen-enhanced localized plasticity (HELP) at slower rates to a coexistence of HELP and hydrogen-enhanced decohesion (HEDE) at medium rates. In a parallel investigation, the hydrogen susceptibility of Al 5083 was evaluated under ballistic tests through experimental and numerical methods. According to the results, the dominance of HEDE is increasing on HELP at greater deformation rates. Finite element methods were utilized and combined with the Johnson-Cook model, and this process confirmed the experimental outcome also this step offered a predictive model for hydrogen-charged conditions in ballistic applications. Lastly, using molecular dynamics simulations, edge dislocation mobility in body centered iron was evaluated in a wide range of temperature, hydrogen concentration and stress levels to investigate the hydrogen susceptibility. Resulting from the study, phenomenological mobility laws were offered. Collectively, these studies advance the understanding of the hydrogen effect on metals under varying mechanical conditions, providing crucial insights for engineering applications where hydrogen exposure is a factor.
This study examines the hydrogen effect on the mechanical properties of aluminum alloys and body centered cubic iron under different loading conditions and strain rates. First, the hydrogen susceptibility of Al 7075 was evaluated under quasi-static and medium strain rates using tensile tests. According to the results, at greater strain rates, hydrogen embrittlement is more dominant compared to quasi-static strain rates. The hydrogen embrittlement mechanism is shifting from hydrogen-enhanced localized plasticity (HELP) at slower rates to a coexistence of HELP and hydrogen-enhanced decohesion (HEDE) at medium rates. In a parallel investigation, the hydrogen susceptibility of Al 5083 was evaluated under ballistic tests through experimental and numerical methods. According to the results, the dominance of HEDE is increasing on HELP at greater deformation rates. Finite element methods were utilized and combined with the Johnson-Cook model, and this process confirmed the experimental outcome also this step offered a predictive model for hydrogen-charged conditions in ballistic applications. Lastly, using molecular dynamics simulations, edge dislocation mobility in body centered iron was evaluated in a wide range of temperature, hydrogen concentration and stress levels to investigate the hydrogen susceptibility. Resulting from the study, phenomenological mobility laws were offered. Collectively, these studies advance the understanding of the hydrogen effect on metals under varying mechanical conditions, providing crucial insights for engineering applications where hydrogen exposure is a factor.
Description
Keywords
Makine Mühendisliği, Metalurji Mühendisliği, Mühendislik Bilimleri, Mechanical Engineering, Metallurgical Engineering, Engineering Sciences
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
119
Google Scholar™
Sustainable Development Goals
7
AFFORDABLE AND CLEAN ENERGY
