Özellik Gruplaması ve Sıralaması ile Birlikte miRNA ve mRNA Ekspresyon Profillerinin Makine Öğrenimi Tabanlı Entegrasyonu

Loading...
Thumbnail Image

Date

2021, 2021

Journal Title

Journal ISSN

Volume Title

Publisher

Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Hastalıkların oluşum ve gelişim mekanizmalarını moleküler seviyede anlamak çok önemlidir. Hastalığa yol açan fonksiyonel mekanizmaların açığa vurulması, yalnızca hastalıkların moleküler tanısına değil, aynı zamanda yeni tedavi yöntemlerinin geliştirilmesine de katkıda bulunur. Bugünlerde, teknolojideki ilerlemeler sayesinde moleküler veriler eski zamanların aksine daha ucuz fiyatlarla elde edilebilir. Bu erişime açık verilerin entegre edilmesi, özellikle kanser gibi kompleks oluşum ve ilerleme mekanizması olan hastalıkların moleküler mekanizmalarını anlamak için elzemdir. Bu tezde, kanser hastalarını doğru sınıflandırmak için, mRNA ve mikroRNA verilerini (moleküler seviyede iki tip –omik veri) entegre eden miRcorrNet ve miRMUTINet adında iki adet araç geliştirildi. 11 kanser tipi için, örneklerin mRNA ve miRNA ekspresyon profilleri, The Cancer Genome Atlas'tan indirildi. İki veri tipi, hem Pearson Korelasyon Katsayısı, hem de Ortak Bilgi metrikleri kullanılarak entegre edildi. 100 katlı Monte Karlo Çapraz Doğrulama kullandığımız deneylerimizde, her iki araç için de 99% Area Under the Curve skoru elde ettik. Geliştirilen yöntemler bağımsız veri kümeleri ile de test edildi. Biyolojik doğrulama amacıyla, her kanser tipi için, önemli olduğu belirlenen miRNAlar ve genler listesi üzerinde, fonksiyonel zenginleştirilme analizi gerçekleştirildi. Ayrıca, her kanser tipi için, hastalıklar ile ilgili olduğu düşünülen mRNA ve miRNA'ler literatür validasyonuna tabi tutulmuş ve bulguların dikkate değer olduğu görülmüştür.
It is very important to understand the development and progression mechanisms of the diseases at the molecular level. Revealing the functional mechanisms that cause the disease not only contributes to the molecular diagnosis of the diseases, but also contributes to the development of the new treatment methods. Nowadays, due to the advances in technology, more molecular data can be obtained at cheaper costs, unlike in the past. Integrating these available data is essential to understand the molecular mechanisms of the diseases, especially the ones having complex formation and progression processes such as cancer. In this thesis, to correctly classify cancer patients and cancer free patients, two different bioinformatics tools (miRcorrNet and miRMUTINet) that integrate mRNA and microRNA data (two types of -omic data at the molecular level) have been developed. For 11 cancer types, mRNA and miRNA expression profiles of the samples were downloaded from The Cancer Genome Atlas. These two data types were integrated using both the Pearson Correlation Coefficient and the Mutual Information metrics. In our experiments using 100-fold Monte Carlo Cross Validation, for both tools, 99% Area Under the Curve score have been obtained. The developed tools have also been tested using independent dataset. For biological validation purposes, for each cancer type, functional enrichment analysis is conducted on the identified list of significant miRNAs and genes. Additionally, for each cancer type, the identified mRNAs and miRNAs were subject to literature validation and the findings were noteworthy.

Description

Keywords

Computer Engineering And Computer Science And Control, Bilgisayar Mühendisliği Bilimleri-Bilgisayar Ve Kontrol

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

94
Page Views

358

checked on Dec 05, 2025

Downloads

139

checked on Dec 05, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo