High-Resolution Augmented Multimodal Sensing of Distributed Radar Network
| dc.contributor.author | Pirkani, Anum | |
| dc.contributor.author | Kumar, Dillon | |
| dc.contributor.author | Hoare, Edward | |
| dc.contributor.author | Bekar, Muge | |
| dc.contributor.author | Reeves, Natalie | |
| dc.contributor.author | Cherniakov, Mikhail | |
| dc.contributor.author | Gashinova, Marina | |
| dc.date.accessioned | 2025-09-25T10:48:11Z | |
| dc.date.available | 2025-09-25T10:48:11Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Advancement toward fully autonomous systems requires enhanced sensing and perception, particularly a 360 degrees vision for safe maneuvering. One approach to achieving this is through a distributed network of radar sensors, operating in homogeneous or heterogeneous configurations, strategically positioned to provide increased coverage and visibility in otherwise blind regions. Such a multiperspective sensing network, complemented with multimodal signal processing, can significantly improve the angular resolution of the radar, delivering high-fidelity scene imagery essential for region classification and path planning. This study presents a methodology for multimodal and multiperspective sensing using heterogeneous radar sensors, utilizing Doppler beam sharpening (DBS) within multiple-input-multiple-output (MIMO) radars to enhance the resolution and coverage. Traditional frequency-modulated continuous wave (FMCW)-MIMO radars, currently the most widely used configuration, are prone to Doppler aliasing, limiting the field of view (FoV) in DBS and MIMO-DBS processing. To address this limitation, the effective FoV in multiperspective image is extended to that provided by the radar's physical aperture. The proposed framework is validated using 77-GHz radar chipsets in both automotive and maritime conditions, with sensors mounted in front-looking, corner-looking, and side-looking orientations. | en_US |
| dc.description.sponsorship | Engineering and Physical Sciences Research Council (EPSRC) U.K. [EP/S033238/1, EP/Y022092/1] | en_US |
| dc.description.sponsorship | This work was supported by the Engineering and Physical Sciences Research Council (EPSRC) U.K. through the STREAM Project under Grant EP/S033238/1 and SBISAR Project under Grant EP/Y022092/1. | en_US |
| dc.identifier.doi | 10.1109/TRS.2025.3581396 | |
| dc.identifier.issn | 2832-7357 | |
| dc.identifier.uri | https://doi.org/10.1109/TRS.2025.3581396 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3935 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
| dc.relation.ispartof | IEEE Transactions on Radar Systems | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Radar | en_US |
| dc.subject | Sensors | en_US |
| dc.subject | Radar Imaging | en_US |
| dc.subject | Mimo | en_US |
| dc.subject | Doppler Effect | en_US |
| dc.subject | Doppler Radar | en_US |
| dc.subject | Array Signal Processing | en_US |
| dc.subject | Image Resolution | en_US |
| dc.subject | Spatial Resolution | en_US |
| dc.subject | Radar Cross-Sections | en_US |
| dc.subject | Co-Registration | en_US |
| dc.subject | Corner Looking | en_US |
| dc.subject | Data Fusion | en_US |
| dc.subject | Distributed Sensors | en_US |
| dc.subject | Front Looking | en_US |
| dc.subject | Multimodal | en_US |
| dc.subject | Multiperspective | en_US |
| dc.subject | Multiple-Input-Multiple-Output (Mimo)-Doppler Beam Sharpening (Dbs) | en_US |
| dc.subject | Radar Sensing Network | en_US |
| dc.subject | Side Looking | en_US |
| dc.title | High-Resolution Augmented Multimodal Sensing of Distributed Radar Network | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.wosid | Gashinova, Marina/Abg-4016-2021 | |
| gdc.author.wosid | Pirkani, Anum/Aaj-3891-2021 | |
| gdc.author.wosid | Bekar, Muge/Gsi-5137-2022 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Pirkani, Anum; Kumar, Dillon; Hoare, Edward; Bekar, Muge; Reeves, Natalie; Cherniakov, Mikhail; Gashinova, Marina] Univ Birmingham, Sch Elect Elect & Syst Engn, Birmingham B15 2TT, England; [Bekar, Muge] Abdullah Gul Univ, Sch Elect & Elect Engn, TR-38080 Kayseri, Turkiye | en_US |
| gdc.description.endpage | 918 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 905 | en_US |
| gdc.description.volume | 3 | en_US |
| gdc.description.woscitationindex | Emerging Sources Citation Index | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4411446110 | |
| gdc.identifier.wos | WOS:001522910300003 | |
| gdc.index.type | WoS | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5349236E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.8669784E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.openalex.fwci | 2.02156574 | |
| gdc.openalex.normalizedpercentile | 0.77 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 1 | |
| gdc.virtual.author | Bekar, Müge | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | 495f422e-19d0-45ba-87e5-10ec98f4ce0a | |
| relation.isAuthorOfPublication.latestForDiscovery | 495f422e-19d0-45ba-87e5-10ec98f4ce0a | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication | f22f14aa-23ad-40e4-bc25-b9705d4051ed | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
