A Planning Model for Task Assignment and Energy Optimization in UAV-Based Mobile Base Stations for Post-Disaster Communication
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Doğal afetlerin ardından haberleşme altyapısının sürdürülebilirliğini sağlamak hayati öneme sahiptir. Üzerlerinde baz istasyonu teknolojisi bulunan İnsansız Hava Araçları (İHA'lar), afet bölgelerinde bağlantıların kurulmasını mümkün kılmaktadır. İHA'ların hareket kabiliyetleri, kapsama yetenekleri ve havada uzun süre kalabilmeleri gibi avantajları bulunsa da; batarya ömrü, olumsuz hava koşulları ve değişken afet ortamları gibi faktörler bu sistemlerin sahadaki etkinliğini kısıtlamaktadır. Bu tez çalışması İHA tabanlı mobil baz istasyonlarının konumlandırılması ve enerji ikmali süreçlerinin optimizasyonunu hedefleyen bir Karma Tamsayılı Doğrusal Programlama (MILP) modeli önermektedir. Modelde nüfus yoğunluğu ve afet etki şiddeti dikkate alınarak talep değerleri dinamik biçimde belirlenmekte; batarya sınırlamaları ve şarj altyapısı gibi kısıtlar entegre edilmektedir. Altıgen grid temelli bir mekânsal yapı kullanılarak kentsel alanlarda kapsama performansı en üst düzeye çıkarılmaktadır. Model, GAMS ile uygulamaya alınmış ve vaka çalışması ile test edilmiştir. İHA sayıları, konuşlanma noktaları ve şarj istasyonu senaryoları kullanılarak simülasyonlar gerçekleştirilmiştir. Elde edilen sonuçlar, modelin enerji verimliliğini koruyarak yüksek kapsama sağlayan etkin konuşlanma planları oluşturabildiğini göstermektedir. Ayrıca, büyük ölçekli uygulamalarda modelin çözüm sürelerinin önemli ölçüde arttığı gözlemlenmiştir. Bu durum, gerçek zamanlı kullanım için sezgisel ve meta-sezgisel algoritmaların entegrasyonunun gerekliliğini ortaya koymaktadır. Bu çalışma, İHA'ların afet sonrası iletişimde etkin kullanılabilmesi için özgün bir optimizasyon yaklaşımı sunmakta ve teorik modelleme ile pratik konuşlanma stratejileri arasında köprü kurarak hem akademik literatüre hem de afet yönetimi uygulamalarına anlamlı bir katkı sağlamaktadır.
Ensuring the sustainability of communications infrastructure following natural disasters is of vital importance. Unmanned Aerial Vehicles (UAVs), equipped with base station technologies, provide that enables connectivity in disaster zones. While UAVs offer key advantages such as mobility, coverage, and prolonged airtime, their effective use in real-world scenarios is often constrained by operational factors such as battery capacity, adverse weather conditions, and dynamic disaster environments. This study introduces a Mixed-Integer Linear Programming (MILP) model designed to optimize the positioning and energy replenishment of UAV-based bases. The model incorporates dynamic user demand based on population density and disaster impact severity, battery limitations, and charging logistics. A hexagonal grid-based spatial framework is employed to maximize coverage in complex urban landscapes. The model is implemented using GAMS and its performance is evaluated through a case study, using district-level demographic and risk data. Scenarios are used to test the proposed solution method by varying the number of UAVs, deployment sites, and available charging stations. The results demonstrate the model's capability to produce effective and energy-efficient UAV assignment plans that significantly improve post-disaster communication coverage. Furthermore, the findings reveal that although the model performs well under moderate-scale conditions, execution times increase considerably in large-scale scenarios. This limitation suggests the necessity of integrating heuristic and metaheuristic approaches in future work to enhance real-time responsiveness and scalability. Overall, this study contributes a novel optimization framework that bridges theoretical modeling and practical deployment strategies, reinforcing the critical role of UAVs as not only a technological solution but also a humanitarian asset in disaster response systems.
Ensuring the sustainability of communications infrastructure following natural disasters is of vital importance. Unmanned Aerial Vehicles (UAVs), equipped with base station technologies, provide that enables connectivity in disaster zones. While UAVs offer key advantages such as mobility, coverage, and prolonged airtime, their effective use in real-world scenarios is often constrained by operational factors such as battery capacity, adverse weather conditions, and dynamic disaster environments. This study introduces a Mixed-Integer Linear Programming (MILP) model designed to optimize the positioning and energy replenishment of UAV-based bases. The model incorporates dynamic user demand based on population density and disaster impact severity, battery limitations, and charging logistics. A hexagonal grid-based spatial framework is employed to maximize coverage in complex urban landscapes. The model is implemented using GAMS and its performance is evaluated through a case study, using district-level demographic and risk data. Scenarios are used to test the proposed solution method by varying the number of UAVs, deployment sites, and available charging stations. The results demonstrate the model's capability to produce effective and energy-efficient UAV assignment plans that significantly improve post-disaster communication coverage. Furthermore, the findings reveal that although the model performs well under moderate-scale conditions, execution times increase considerably in large-scale scenarios. This limitation suggests the necessity of integrating heuristic and metaheuristic approaches in future work to enhance real-time responsiveness and scalability. Overall, this study contributes a novel optimization framework that bridges theoretical modeling and practical deployment strategies, reinforcing the critical role of UAVs as not only a technological solution but also a humanitarian asset in disaster response systems.
Description
Keywords
Endüstri ve Endüstri Mühendisliği, Afet Bilinci, Afet Hazırlığı, Enerji Yönetimi, İnsansız Hava Aracı, Industrial and Industrial Engineering, Disaster Awareness, Disaster Preparation, Energy Management, Unmanned Aerial Vehicle
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
52
Google Scholar™
Sustainable Development Goals
3
GOOD HEALTH AND WELL-BEING

8
DECENT WORK AND ECONOMIC GROWTH

9
INDUSTRY, INNOVATION AND INFRASTRUCTURE

10
REDUCED INEQUALITIES

11
SUSTAINABLE CITIES AND COMMUNITIES

12
RESPONSIBLE CONSUMPTION AND PRODUCTION

13
CLIMATE ACTION

14
LIFE BELOW WATER

16
PEACE, JUSTICE AND STRONG INSTITUTIONS
