CSA-DE-LR: Enhancing Cardiovascular Disease Diagnosis With a Novel Hybrid Machine Learning Approach
| dc.contributor.author | Dedeturk, Beyhan Adanur | |
| dc.contributor.author | Dedeturk, Bilge Kagan | |
| dc.contributor.author | Bakir-Gungor, Burcu | |
| dc.date.accessioned | 2025-09-25T10:42:05Z | |
| dc.date.available | 2025-09-25T10:42:05Z | |
| dc.date.issued | 2024 | |
| dc.description | Dedeturk, Bilge Kagan/0000-0002-8026-5003; | en_US |
| dc.description.abstract | Cardiovascular diseases (CVD) are a leading cause of mortality globally, necessitating the development of efficient diagnostic tools. Machine learning (ML) and metaheuristic algorithms have become prevalent in addressing these challenges, providing promising solutions in medical diagnostics. However, traditional ML approaches often need to be improved in feature selection and optimization, leading to suboptimal performance in complex diagnostic tasks. To overcome these limitations, this study introduces a new hybrid method called CSA-DE-LR, which combines the clonal selection algorithm (CSA) and differential evolution (DE) with logistic regression. This integration is designed to optimize logistic regression weights efficiently for the accurate classification of CVD. The methodology employs three optimization strategies based on the F1 score, the Matthews correlation coefficient (MCC), and the mean absolute error (MAE). Extensive evaluations on benchmark datasets, namely Cleveland and Statlog, reveal that CSA-DELR outperforms state-of-the-art ML methods. In addition, generalization is evaluated using the Breast Cancer Wisconsin Original (WBCO) and Breast Cancer Wisconsin Diagnostic (WBCD) datasets. Significantly, the proposed model demonstrates superior efficacy compared to previous research studies in this domain. This study's findings highlight the potential of hybrid machine learning approaches for improving diagnostic accuracy, offering a significant advancement in the fields of medical data analysis and CVD diagnosis. | en_US |
| dc.identifier.doi | 10.7717/peerj-cs.2197 | |
| dc.identifier.issn | 2376-5992 | |
| dc.identifier.uri | https://doi.org/10.7717/peerj-cs.2197 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12573/3409 | |
| dc.language.iso | en | en_US |
| dc.publisher | PeerJ Inc | en_US |
| dc.relation.ispartof | PeerJ Computer Science | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Cardiovascular Diseases | en_US |
| dc.subject | Machine Learning | en_US |
| dc.subject | Clonal Selection Algorithm | en_US |
| dc.subject | Differential Evolution | en_US |
| dc.subject | Logistic Regression | en_US |
| dc.subject | Medical Diagnostics | en_US |
| dc.title | CSA-DE-LR: Enhancing Cardiovascular Disease Diagnosis With a Novel Hybrid Machine Learning Approach | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Dedeturk, Bilge Kagan/0000-0002-8026-5003 | |
| gdc.author.wosid | Adanur Dedeturk, Beyhan/Gxv-6964-2022 | |
| gdc.author.wosid | Dedeturk, Bilge/Aau-6579-2020 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.collaboration.industrial | false | |
| gdc.description.department | Abdullah Gül University | en_US |
| gdc.description.departmenttemp | [Dedeturk, Beyhan Adanur; Bakir-Gungor, Burcu] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye; [Dedeturk, Bilge Kagan] Erciyes Univ, Dept Software Engn, Kayseri, Turkiye | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | e2197 | |
| gdc.description.volume | 10 | en_US |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4400788820 | |
| gdc.identifier.pmid | 39678278 | |
| gdc.identifier.wos | WOS:001273874700001 | |
| gdc.index.type | WoS | |
| gdc.index.type | PubMed | |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 3.0 | |
| gdc.oaire.influence | 2.6422728E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Cardiovascular diseases | |
| gdc.oaire.keywords | Electronic computers. Computer science | |
| gdc.oaire.keywords | Machine learning | |
| gdc.oaire.keywords | Clonal selection algorithm | |
| gdc.oaire.keywords | Logistic regression | |
| gdc.oaire.keywords | Computational Biology | |
| gdc.oaire.keywords | QA75.5-76.95 | |
| gdc.oaire.keywords | Differential evolution | |
| gdc.oaire.keywords | Medical diagnostics | |
| gdc.oaire.popularity | 4.6379793E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 4.31728045 | |
| gdc.openalex.normalizedpercentile | 0.91 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 17 | |
| gdc.plumx.newscount | 1 | |
| gdc.plumx.scopuscites | 4 | |
| gdc.virtual.author | Adanur Dedetürk, Beyhan | |
| gdc.virtual.author | Güngör, Burcu | |
| gdc.wos.citedcount | 3 | |
| relation.isAuthorOfPublication | baae61f3-31e8-4d3a-8a77-f0d1114afa1e | |
| relation.isAuthorOfPublication | e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0 | |
| relation.isAuthorOfPublication.latestForDiscovery | baae61f3-31e8-4d3a-8a77-f0d1114afa1e | |
| relation.isOrgUnitOfPublication | 665d3039-05f8-4a25-9a3c-b9550bffecef | |
| relation.isOrgUnitOfPublication | 52f507ab-f278-4a1f-824c-44da2a86bd51 | |
| relation.isOrgUnitOfPublication | ef13a800-4c99-4124-81e0-3e25b33c0c2b | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 665d3039-05f8-4a25-9a3c-b9550bffecef |
