CSA-DE-LR: Enhancing Cardiovascular Disease Diagnosis With a Novel Hybrid Machine Learning Approach

dc.contributor.author Dedeturk, Beyhan Adanur
dc.contributor.author Dedeturk, Bilge Kagan
dc.contributor.author Bakir-Gungor, Burcu
dc.date.accessioned 2025-09-25T10:42:05Z
dc.date.available 2025-09-25T10:42:05Z
dc.date.issued 2024
dc.description Dedeturk, Bilge Kagan/0000-0002-8026-5003; en_US
dc.description.abstract Cardiovascular diseases (CVD) are a leading cause of mortality globally, necessitating the development of efficient diagnostic tools. Machine learning (ML) and metaheuristic algorithms have become prevalent in addressing these challenges, providing promising solutions in medical diagnostics. However, traditional ML approaches often need to be improved in feature selection and optimization, leading to suboptimal performance in complex diagnostic tasks. To overcome these limitations, this study introduces a new hybrid method called CSA-DE-LR, which combines the clonal selection algorithm (CSA) and differential evolution (DE) with logistic regression. This integration is designed to optimize logistic regression weights efficiently for the accurate classification of CVD. The methodology employs three optimization strategies based on the F1 score, the Matthews correlation coefficient (MCC), and the mean absolute error (MAE). Extensive evaluations on benchmark datasets, namely Cleveland and Statlog, reveal that CSA-DELR outperforms state-of-the-art ML methods. In addition, generalization is evaluated using the Breast Cancer Wisconsin Original (WBCO) and Breast Cancer Wisconsin Diagnostic (WBCD) datasets. Significantly, the proposed model demonstrates superior efficacy compared to previous research studies in this domain. This study's findings highlight the potential of hybrid machine learning approaches for improving diagnostic accuracy, offering a significant advancement in the fields of medical data analysis and CVD diagnosis. en_US
dc.identifier.doi 10.7717/peerj-cs.2197
dc.identifier.issn 2376-5992
dc.identifier.uri https://doi.org/10.7717/peerj-cs.2197
dc.identifier.uri https://hdl.handle.net/20.500.12573/3409
dc.language.iso en en_US
dc.publisher PeerJ Inc en_US
dc.relation.ispartof PeerJ Computer Science en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Cardiovascular Diseases en_US
dc.subject Machine Learning en_US
dc.subject Clonal Selection Algorithm en_US
dc.subject Differential Evolution en_US
dc.subject Logistic Regression en_US
dc.subject Medical Diagnostics en_US
dc.title CSA-DE-LR: Enhancing Cardiovascular Disease Diagnosis With a Novel Hybrid Machine Learning Approach en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Dedeturk, Bilge Kagan/0000-0002-8026-5003
gdc.author.wosid Adanur Dedeturk, Beyhan/Gxv-6964-2022
gdc.author.wosid Dedeturk, Bilge/Aau-6579-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Abdullah Gül University en_US
gdc.description.departmenttemp [Dedeturk, Beyhan Adanur; Bakir-Gungor, Burcu] Abdullah Gul Univ, Dept Comp Engn, Kayseri, Turkiye; [Dedeturk, Bilge Kagan] Erciyes Univ, Dept Software Engn, Kayseri, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage e2197
gdc.description.volume 10 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4400788820
gdc.identifier.pmid 39678278
gdc.identifier.wos WOS:001273874700001
gdc.index.type WoS
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.6422728E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Cardiovascular diseases
gdc.oaire.keywords Electronic computers. Computer science
gdc.oaire.keywords Machine learning
gdc.oaire.keywords Clonal selection algorithm
gdc.oaire.keywords Logistic regression
gdc.oaire.keywords Computational Biology
gdc.oaire.keywords QA75.5-76.95
gdc.oaire.keywords Differential evolution
gdc.oaire.keywords Medical diagnostics
gdc.oaire.popularity 4.6379793E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 4.31728045
gdc.openalex.normalizedpercentile 0.91
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 17
gdc.plumx.newscount 1
gdc.plumx.scopuscites 4
gdc.virtual.author Adanur Dedetürk, Beyhan
gdc.virtual.author Güngör, Burcu
gdc.wos.citedcount 3
relation.isAuthorOfPublication baae61f3-31e8-4d3a-8a77-f0d1114afa1e
relation.isAuthorOfPublication e17be1f8-1c9a-45f2-bf0d-f8b348d2dba0
relation.isAuthorOfPublication.latestForDiscovery baae61f3-31e8-4d3a-8a77-f0d1114afa1e
relation.isOrgUnitOfPublication 665d3039-05f8-4a25-9a3c-b9550bffecef
relation.isOrgUnitOfPublication 52f507ab-f278-4a1f-824c-44da2a86bd51
relation.isOrgUnitOfPublication ef13a800-4c99-4124-81e0-3e25b33c0c2b
relation.isOrgUnitOfPublication.latestForDiscovery 665d3039-05f8-4a25-9a3c-b9550bffecef

Files