Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/203
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by WoS Q "Q1"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 42Citation - Scopus: 51CBI4.0: A Cross-Layer Approach for Big Data Gathering for Active Monitoring and Maintenance in the Manufacturing Industry 4.0(Elsevier, 2021) Faheem, Muhammad; Butt, Rizwan Aslam; Ali, Rashid; Raza, Basit; Ngadi, Md Asri; Gungor, Vehbi Cagri; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Faheem, Muhammad; Gungor, Vehbi Cagri; 01. Abdullah Gül UniversityIndustry 4.0 (I4.0) defines a new paradigm to produce high-quality products at the low cost by reacting quickly and effectively to changing demands in the highly volatile global markets. In Industry 4.0, the adoption of Internet of Things (IoT)-enabled Wireless Sensors (WSs) in the manufacturing processes, such as equipment, machining, assembly, material handling, inspection, etc., generates a huge volume of data known as Industrial Big Data (IBD). However, the reliable and efficient gathering and transmission of this big data from the source sensors to the floor inspection system for the real-time monitoring of unexpected changes in the production and quality control processes is the biggest challenge for Industrial Wireless Sensor Networks (IWSNs). This is because of the harsh nature of the indoor industrial environment that causes high noise, signal fading, multipath effects, heat and electromagnetic interference, which reduces the transmission quality and trigger errors in the IWSNs. Therefore, this paper proposes a novel cross-layer data gathering approach called CBI4.0 for active monitoring and control of manufacturing processes in the Industry 4.0. The key aim of the proposed CBI4.0 scheme is to exploit the multi-channel and multi-radio architecture of the sensor network to guarantee quality of service (QoS) requirements, such as higher data rates, throughput, and low packet loss, corrupted packets, and latency by dynamically switching between different frequency bands in the Multichannel Wireless Sensor Networks (MWSNs). By performing several simulation experiments through EstiNet 9.0 simulator, the performance of the proposed CBI4.0 scheme is compared against existing studies in the automobile Industry 4.0. The experimental outcomes show that the proposed scheme outperforms existing schemes and is suitable for effective control and monitoring of various events in the automobile Industry 4.0.Article Citation - WoS: 5Node-Level Error Control Strategies for Prolonging the Lifetime of Wireless Sensor Networks(IEEE-Inst Electrical Electronics Engineers Inc, 2021) Tekin, Nazli; Yildiz, Huseyin Ugur; Gungor, Vehbi Cagri; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Gungor, Vehbi Cagrı; 01. Abdullah Gül UniversityIn Wireless Sensor Networks (WSNs), energy-efficiency and reliability are two critical requirements for attaining a long-term stable communication performance. Using error control (EC) methods is a promising technique to improve the reliability of WSNs. EC methods are typically utilized at the network-level, where all sensor nodes use the same EC method. However, improper selection of EC methods on some nodes in the network-level strategy can reduce the energy-efficiency, thus the lifetime of WSNs. In this study, a node-level EC strategy is proposed via mixed-integer programming (MIP) formulations. The MIP model determines the optimum EC method (i.e., automatic repeat request (ARQ), forward error correction (FEC), or hybrid ARQ (HARQ)) for each sensor node to maximize the network lifetime while guaranteeing a pre-determined reliability requirement. Five meta-heuristic approaches are developed to overcome the computational complexity of the MIP model. The performances of the MIP model and meta-heuristic approaches are evaluated for a wide range of parameters such as the number of nodes, network area, packet size, minimum desired reliability criterion, transmission power, and data rate. The results show that the node-level EC strategy provides at least 4.4% prolonged lifetimes and 4.0% better energy-efficiency than the network-level EC strategies. Furthermore, one of the developed meta-heuristic approaches (i.e., extended golden section search) provides lifetimes within a 3.9% neighborhood of the optimal solutions, reducing the solution time of the MIP model by 89.6%.