Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/203
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Subject "active subnetwork search"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
conferenceobject.listelement.badge Identification of Shared Pathways Among Immune Related Diseases Utilizing Active Subnetworks(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2020) Eryilmaz, Mahmut Kaan; Kuzudisli, Cihan; Gungor, Burcu Bakir; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği BölümüDifferent, but related diseases often contain shared symptoms indicating the presence of possible overlaps in underlying pathogenic mechanisms. The identification of the shared pathways and related factors across these diseases helps to better understand the causes of these diseases, to prevent and treat these diseases. In this study, using immune-related diseases, we proposed a new method on how to compare the development mechanisms of related diseases based on biological pathways. Following the developments in genomic technologies, the genotyping gets cheaper and easier, and hence genome-wide association studies (GWAS) emerged. By this means, via studying big-sized case-control groups for a specific disease, potential genetic variations, single nucleotide polymorphisms (SNPs) could he identified. With the help of these studies, in which around a million of SNPs are scanned, the variations and genes that could have a role in specific disease development could be detected. In this study, via using available GWAS datasets and human protein-protein interaction network, and via detecting active subnetworks and affected pathways, seven immune related diseases are analyzed. Via investigating the similarities among the identified pathways for related diseases, we aim to define the underlying pathogenic mechanisms, and hence to contribute to the elucidation of disease development mechanisms and to the drug repositioning studies.conferenceobject.listelement.badge Investigation of Hepatocellular Carcinoma Molecular Mechanisms via in Silico Analyses(IEEE, 345 E 47TH ST, NEW YORK, NY 10017 USA, 2020) Dogan, Refika Sultan; Saka, Samed; Gungor, Burcu Bakir; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği BölümüHepatocellular carcinoma (HCC) is the most common cause of cancer-related death in the world. The molecular changes in the organism during the development of HCC are not fully understood. The aim of the present study is to contribute to the identification of critical genes and pathways associated with HCC via integrating various bioinformatics methods. In this study, experiments were conducted on gene expression data of 14 HCC tissues and non-cancerous control tissues. A total of 1229 genes, which show a statistically significant change between the groups, were identified. Among these, 681 genes were upregulated and 548 genes were downregulated. Via mapping the detected genes into protein protein interaction networks, active subnetwork search, subnetwork topological analysis and functional enrichment analyses were carried out. The interactions between the molecular pathways affected by HCC were also presented.