Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12573/203
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Subject "Active subnetwork search"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Active Subnetwork GA: A Two Stage Genetic Algorithm Approach to Active Subnetwork Search(BENTHAM SCIENCE PUBL LTDEXECUTIVE STE Y-2, PO BOX 7917, SAIF ZONE, 1200 BR SHARJAH, U ARAB EMIRATES, 2017) Ozisik, Ozan; Bakir-Gungor, Burcu; Diri, Banu; Sezerman, Osman Ugur; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Bakir-Gungor, BurcuBackground: A group of interconnected genes in a protein-protein interaction network that contains most of the disease associated genes is called an active subnetwork. Active subnetwork search is an NP-hard problem. In the last decade, simulated annealing, greedy search, color coding, genetic algorithm, and mathematical programming based methods are proposed for this problem. Method: In this study, we employed a novel genetic algorithm method for active subnetwork search problem. We used active node list chromosome representation, branch swapping crossover operator, multicombination of branches in crossover, mutation on duplicate individuals, pruning, and two stage genetic algorithm approach. The proposed method is tested on simulated datasets and Wellcome Trust Case Control Consortium rheumatoid arthritis genome-wide association study dataset. Our results are compared with the results of a simple genetic algorithm implementation and the results of the simulated annealing method that is proposed by Ideker et al. in their seminal paper. Results and Conclusion: The comparative study demonstrates that our genetic algorithm approach outperforms the simple genetic algorithm implementation in all datasets and simulated annealing in all but one datasets in terms of obtained scores, although our method is slower. Functional enrichment results show that the presented approach can successfully extract high scoring subnetworks in simulated datasets and identify significant rheumatoid arthritis associated subnetworks in the real dataset. This method can be easily used on the datasets of other complex diseases to detect disease-related active subnetworks. Our implementation is freely available at https://www.ce.yildiz.edu.tr/personal/ozanoz/file/6611/ActSubGAArticle Evaluation of Sub-Network search programs in epilepsy-related GWAS dataset(Pamukkale Üniversitesi, 2022) Bakir Gungor, Burcu; Adanur Dedetürk, Beyhan; 0000-0003-4983-2417; 0000-0002-2272-6270; AGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü; Bakir Gungor, Burcu; Adanur Dedetürk, BeyhanThe active sub-network detection aims to find a group of interconnected genes of disease-related genes in a protein-protein interaction network. In recent years, several algorithms have been developed for this problem. In this study, the analysis of disease-specific sub-network identification programs is evaluated using epilepsy data set. Under the same conditions and with the same data set, 9 different programs are run and results of their Greedy algorithm, Genetic algorithm, Simulated Annealing Algorithm, MCC (Maximal Clique Centrality) algorithm, MCODE (Molecular Complex Detection) algorithm, and PEWCC (Protein Complex Detection using Weighted Clustering Coefficient) algorithm are shown. The top-scoring 5 modules of each program, are compared using fold enrichment analysis and normalized mutual information. Also, the identified subnetworks are functionally enriched using a hypergeometric test, and hence, disease-associated biological pathways are identified. In addition, running times and features of the programs are comparatively evaluated.